
Engineering Resilient Systems (Part 1)
Jonah McElfatrick

1700463

ABSTRACT
The given case study indicates that the IT company in
question hosts multiple different aspects that make up their
infrastructure. It has been noted that the company provides
their staff with a mobile application which can be installed
on their own devices, in which allows staff to change their
own account details. Details regarding the functionality and
complexity of the mobile application have not been
provided, therefore due to this, certain presumptions have
been taken when writing this report. It is presumed that
when the user wants to change their details, the application
accesses and stores the account details data in a back-end
database. Due to this, it is also presumed that the
application includes a localised backup on the mobile
device in order to allow for the user to update their details
when not connected to the internet.

The following document provides information regarding
application security with an analysis of the relevant class of
vulnerabilities in relation to the mobile application in
question. Also included is a walkthrough of one of the
discussed vulnerabilities, with possible solutions to the
vulnerability, in order to demonstrate the skills and
knowledge required to carry out the exploit. Alongside the
demonstration, a recommendation around a secure
software development practice in which could be
implemented in order to reduce the chances of an exploit or
vulnerability, such as the one demonstrated, being
introduced into the mobile application during the
development cycle.

1. Introduction
A blog published by Codersera (‘Top 7 Vulnerabilities In
Android Applications 2020 -’, 2019), indicated that more
vulnerabilities are found in Android applications vs iOS
applications, with the weight being 43% vs 38%. Of these
vulnerabilities, 60% of them are client-side vulnerabilities,
with 89% of these being able to be exploited remotely with
no physical access to the device and 56% in which can be
carried out without the need for a jailbroken or rooted
device.
There are many different types of classifications that
vulnerabilities can be categorized under. According to
OWASP’s Mobile Top 10 (OWASP Top 10 Mobile
Vulnerabilities Developers Need to Understand, no date),
the top class of mobile vulnerabilities come under the
category of ‘Improper Platform Usage’ with the second class
being ‘Insecure Data Storage’. According to ptsecurity

(Vulnerabilities and threats in mobile applications, 2019, no
date), 76% of mobile applications include a vulnerability
under the class of ‘Insecure Data Storage’, leaking
information such as login credentials and personal
information.

For businesses, having one of these vulnerabilities can lead
to issues such as:

● Identity or credential theft
● Fraud
● Market reputation damage
● Poor customer relationships

Having any one of these issues could be very detrimental to
any form of business and could cost the company a vast
amount of money to repair any damages incurred (OWASP
Top 10 Mobile Vulnerabilities Developers Need to
Understand, 29 June 2020).
The average cost a company incurs due to the effects of a
cyber-attack is approximately $200,000 according to a
Hiscox 2019 report (Hiscox UK | Business Insurance, Home
Insurance & more, 2019). For larger corporations, this may
not be a lot of money, but this can cause other smaller
businesses to start having financial issues or in some cases
cause them to go into bankruptcy. To help prevent a security
breach, developers can implement different methods into
their development cycle in order to help improve the focus
on application security.

2. Background
There are many different types of vulnerabilities that mobile
applications can be susceptible to. Some of these
vulnerabilities include storing data in ways that would be
considered insecure. Mitre’s CVE database (CVE -
Common Vulnerabilities and Exposures (CVE), 4 February
2021), provides a list of found vulnerabilities in all manner of
software and hardware. Below are some examples of
vulnerabilities found related to the class of ‘Insecure Data
Storage’.

2.1 CVE-2018-11544
This vulnerability is found in The Olive Tree FTP Server
application v1.32 for Android which involves insecure
storage of the ‘prefUsername’ and ‘prefUserass’ strings,
stored in the

/data/data/com.theolivetree.ftpserver/shared_prefs/com.the
olivetree.ftpserver_preferences.xml file. (CVE -
CVE-2018-11544, 2018)
This vulnerability would allow for non-root users to be able
to find and view the username and password.

2.2 CVE-2019-5625
This vulnerability is found in the Android application Halo
Home before v1.11.0, where the OAuth authentication and
refresh tokens are stored in a plain text file. The file is
present until the user is logged out of the application and
the device restarted (CVE - CVE-2019-5625, 2019).
This vulnerability would allow an attacker with physical
access to the device to be able to impersonate the real user
by using the stored tokens which in turn would allow then to
be able to view and change the user’s personal information
in the application backend service.

2.3 CVE-2019-13099
This vulnerability was found in the Android application
Momo v2.1.9 where the application stores sensitive data
such as usernames and passwords in plaintext.
This vulnerability allows for a non-root user with the right
knowledge to view the username and password of a valid
user through the use of logcat (CVE - CVE-2019-13099,
2019).

2.4 CVE-2019-13100
This vulnerability is present in the Android application Send
Anywhere v9.4.18 where sensitive information is stored in
plaintext in the
‘data/data/com.estmob.android.sendanywhere/shared_prefs
/sendanywhere_device.xml’ file (CVE - CVE-2019-13100,
2019).
This vulnerability would allow for non-root users to be able
to find and view the username and password.

3. Exploit Implementation
Each of the CVE’s described above all come under the
OWASP heading of ‘Improper Data Storage’. This allows
anyone with the correct knowledge and understanding to be
able to gain access to the stored data to view and possibly
exploit it for malicious gain.
In order to gain a deeper understanding of how these
exploits can be carried out, following is the procedure taken
to exploit the CVE-2019-13100 vulnerability in the Send
Anywhere Android application.

First an Android emulator was initialized and launched
through Android Studio (Download Android Studio and SDK
tools | Android Developers, 24 February 2021). The

emulator used was a Nexus 5X running Android 7.1.1
Nougat.

From here, the Send Anywhere application (Send
Anywhere, no date), v9.4.18 was installed onto the emulator
and a user account was logged into the application.

Next ADB (Android Debug Bridge (adb), 18 February 2021),
was used to connect the emulator to a computer and a
backup of the application was taken. The following
commands were used to carry this out.

● ./adb devices
● ./adb backup -f sendanywhere.ab -noapk

com.estmob.android.sendanywhere

When executing the ‘./adb backup’ command, a prompt is
displayed on the emulator screen, this requires a password
to be entered for the backup file, this password is then used
to decrypt the backup file when extracting the information.

The next step was to transfer the backup to a Linux
machine. This is to install the required tools to convert the
sendanywhere.ab file to a tar file for extraction of the data.
The tools, android-backup-extractor (abe) (Elenkov, 2021),
and Maven (Maven – Welcome to Apache Maven, 25
February 2021), are used for this conversion. The following
commands are used to install these tools:

● ‘git clone
https://github.com/nelenkov/android-backup-extrac
tor.git’

● ‘sudo apt install maven’

Once these commands have been carried out, the next step
is to navigate to the cloned abe folder and compile the abe
tool using the following commands:

● ‘mvn clean package’
From here the sendanywhere.ab file can be converted to
the required tar file using the following commands:

● ‘java -jar target/abe.jar unpack sendanywhere.ab
sendanywhere.tar “”’

● ‘tar -xvf sendanywhere.tar’

Once converted, opening the tar folder and navigating to the
directory ‘/apps/com.estmob.android.sendanywhere/sp/’,
and opening the ‘sendanywhere_device.xml’ file reveals the
following screen.

https://github.com/nelenkov/android-backup-extractor.git
https://github.com/nelenkov/android-backup-extractor.git

Figure 1: sendanywhere_device.xml

As can be seen in the figure above, the ‘user_id’ and
‘user_password’ field are stored in a non-encrypted xml file
with the values displayed in plain text. This allows for
anyone with the relevant skillset and physical access to the
mobile device to gain access to the username/email and
password of the user which could then allow them access to
the Send Anywhere application. This could come with other
unseen consequences as having access to the password
for this account could give the attacker an indication of the
type or trend of passwords that the user may use. This
could potentially allow the attacker to gain access to other
accounts using the same or similar credentials.

3.1 Mitigation
Possible solutions to the vulnerability shown above could
include removing the localized storage of any sensitive
data, hashing the data or encrypting the files at rest.
Removing the localized storage of this data would eliminate
the issue of having sensitive data stored in plain text and
would therefore eliminate this vulnerability. This however
could come at the cost of functionality as removing localized
storage could have negative effects regarding the features
that the application provides.
Hashing the data before it is stored in the file prevents the
issue from data being stored as plain text. Therefore, the
data stored could not be read from and used for login
details when required. Hashing algorithms although not
reversible are not the strongest form of data protection.
Hashes can be captured, and tools can then be used to
brute force the hash quickly if not used in the correct
manner.
Encryption of files that hold sensitive data for this
application could allow for a more secure method of
storage. This allows for the localized storage of the user
details, which could be required for other features the
application offers while maintaining device and account
security. Both Googles Android and Apple’s iOS platforms
offer ways in which to encrypt and decrypt files through
code to allow for a secure system of reading and writing to
files. Google’s ‘Android Jetpack’ library (Android
Developers, 24 February 2021) and Apple’s on disk
encryption method (Encrypting Your App’s Files | Apple
Developer Documentation, 2021), provide the required

features and functionality to be able to read and write to
encrypted files.

4. Recommendation
A possible prevention method for the class of vulnerabilities
described above could be to implement a secure code
review before any developed piece of code is placed into a
live production build. A secure code review is the process
which involves manually and/or autonomously analyzing a
piece of code or application for security vulnerabilities and
bad practices. Both manual and automatic methods can
include the use of scanners and/or tools to help indicate
where vulnerabilities could be present in code.
A secure code review normally includes a checklist in order
to understand what is being looked for in the review. An
example of this is the OWASP Mobile App Security
Checklist (OWASP Mobile Security Testing Guide, 2
October 2020). Alongside this a threat model must be
defined in order to understand how the system could be
attacked in order to prevent any vulnerabilities being
present that could allow these attacks to be carried out.
Carrying out a secure code review is a relatively simple
process in which could result in the prevention of multiple
vulnerabilities, such as the ones noted above, from being
introduced into a live application build, which in turn can
save a company not only a lot of money but also prevent
any negative reputational damage from the consumers.

4.1 Manual
During a manual code review, the piece of code in question
is manually analyzed, reviewed, and tested for different
vulnerabilities or bad practices. This is mainly carried out by
a human being with little help from some tools. To carry out
a manual review on the Send Anywhere apk, first it was
unzipped using the command:

● ‘unzip Send\
Anywhere-Premium-v9.4.18_build_432096.apk -d
SendAnywhere’

Then using the d2j dex2jar function (Pan, 2021), the
classes.dex file is converted it to a jar file:

● ‘d2j-dex2jar classes.dex’
The next step is to use the java decompiler graphical user
interface (Java Decompiler, 25 December 2019), to open
the jar file and view the source code. Due to having the
previous knowledge of knowing what is vulnerable and to be
found in this case, a search term can be used to find the file
required. As can be seen in the figure below searching
through the source code for the sendanywhere_device.xml
file provides the result where, in the directory
‘classes-dex2jar.jar/com.estmob/paprika.transfer/b.class’,
the functions for reading and writing the username and
passwords to the file can be seen.

Figure 2: Vulnerable Code

As can be seen in the figure above, the highlighted section
in red shows the code used for writing the username and
password to the file is not using any methods to store the
credentials securely, it is simply writing the values of the
‘device_id’, ‘device_password’, ‘user_id’ and
‘user_password’ variables to the shared preferences
sendanywhere_device file. There is no obscurification or
protection in place to help secure the credentials from
unauthorized users from gaining access and viewing them.

4.2 Automatic
During an autonomous code review, the piece of code in
question is scanned and tested by scripts and tools. This
saves on time and cost due to being much faster than a
manual review as typically computers are faster than
humans.
Examples of tools that could be used in an autonomous
review could include Quixxi (Mobile App Security Made
Quick and Easy | Quixxisecurity, 2021) or Mobile Security
Framework (MobSF/Mobile-Security-Framework-MobSF:
Mobile Security Framework (MobSF) is an automated,
all-in-one mobile application (Android/iOS/Windows)
pen-testing, malware analysis and security assessment
framework capable of performing static and dynamic
analysis., 27 February 2021).
The Quixxi website works by simply uploading the Send
Anywhere apk to the website and running the automated
scan. The MoSF works by using the following commands in
a Linux terminal to be able to run the framework on a
localized environment:

● ‘git clone
https://github.com/MobSF/Mobile-Security-Framew
ork-MobSF.git’

● ‘cd Mobile-Security-Framework-MobSF’
● ‘./setup.sh’
● ‘./run.sh 127.0.0.1:8000’

From here, navigating to the address 127.0.0.1:8000 in a
web browser and uploading the apk file to the web interface,
a vulnerability scan can be initiated.
The Send Anywhere application was scanned using both of
the tools above, the results can be seen in appendix A for
the Quixxi results and appendix B for the MobSF results.
As can be seen from both autonomous scans, multiple
classes of vulnerabilities were found with the Send
Anywhere application, including the class specified in this
report, Insecure Data Storage. Depending on how many
and the class of the found vulnerabilities, scanners can
sometimes give recommendations on actions to take in
order to help resolve these issues.

4.3 Mitigation
After a secure code review and the source of the
vulnerability has been identified, alteration to the code as
mentioned above in section 3.1, implementing file
encryption can allow the application to maintain full
functionality while keeping information stored securely and
locally on the device. This can be carried out by using the
cryptographic library provided by Google for Android
developers. This includes common functions such as
reading and writing to encrypted files using the AES
(Advance Encryption Standard) method. Included in
appendix C is the functions provided by Google for reading
and writing the user credentials to an encrypted file. These
functions could be implemented into the send anywhere
application in order to allow for localized secure storage of
user credentials. Another option would be to remove the
functions entirely and to no longer store user credentials
locally on the device.

5. Limitations & Challenges
Implementing a secure code review can help to solve issues
before they are turned into possible exploits or
vulnerabilities in a live build. However, while implementing a
secure code review can help in some cases, there are other
aspects that should be considered before choosing the right
kind of review to implement into the production lifecycle.

5.1 Manual
Manual code reviews can sometimes pick up vulnerabilities
or issues that a scanner may not since scanners use
pattern matching and database lookup techniques when
searching for vulnerabilities. Although a manual code review
could possibly find issues that an autonomous review may
miss, due to it being a manual review by human beings, it
can take a considerably longer length of time to review the

https://github.com/MobSF/Mobile-Security-Framework-MobSF.git
https://github.com/MobSF/Mobile-Security-Framework-MobSF.git

same amount of code. This longer length of time can cause
issues in the development lifecycle as to pass a code
review, certain criteria must be met and then once reviewed,
implemented into the application in question which then
takes more time. This can cause delays in production time
and therefore the extra time required would need to be
taken into consideration at the start of the project and a
buffer put in place in case of any issues that are
encountered. Due manual reviews taking a longer length of
time, this also usually means that it costs more to
implement. This is due to the number of working hours that
is required to be put into the review itself, although this may
differ depending on the type of autonomous tools and
scanners used.

5.2 Autonomous
An autonomous code review can be much faster than a
manual review, this however can come with its own
consequences. Autonomous code reviews can report not
only vulnerabilities present in the code, but can also report
false positives, where there is a report of something being
wrong when there is nothing wrong, or even false negatives,
where nothings is reported as wrong when there is
something wrong. This then requires a user to check the
review itself and ensure that what is reported should or
should not be acted upon, which in turn can take an
increasing amount of time depending on the size of the
code review being carried out.

6. Conclusion
Implementing a secure code review into the development
lifecycle could decrease the chances of a known or
unknown vulnerability making it into the live production build
of an application.
A secure code review implemented into the development
lifecycle of the Send Anywhere application shown in this
paper, could have identified the demonstrated vulnerability
before it was released to the public.
Secure code reviews are easy to implement into the
production cycle with minimal training being required for
developers. Secure software reviews can be used in
conjunction with other secure development practices in
order to gain a further level of validation.

References
‘Top 7 Vulnerabilities In Android Applications
2020 -’ (2019), 20 September. Available at:
https://codersera.com/blog/top-7-vulnerabiliti
es-in-android-applications-2019/ (Accessed:
16 February 2021).

OWASP Mobile Top 10 (2016). Available at:
https://owasp.org/www-project-mobile-top-10/
(Accessed: 23 February 2021).

Vulnerabilities and threats in mobile
applications, 2019 (no date). Available at:
https://www.ptsecurity.com/ww-en/analytics/
mobile-application-security-threats-and-vulne
rabilities-2019/ (Accessed: 6 March 2021).

WASP Top 10 Mobile Vulnerabilities
Developers Need to Understand (29 June
2020). Available at:
https://www.cypressdefense.com/blog/owasp
-mobile-top-10-vulnerabilities/ (Accessed: 23
February 2021).

Business Insurance | Hiscox (2019). Available
at: https://www.hiscox.com/ (Accessed: 28
February 2021).

CVE - Common Vulnerabilities and Exposures
(CVE) (February 4th, 2021). Available at:
https://cve.mitre.org/ (Accessed: 18 February
2021).

CVE - CVE-2018-11544 (2018). Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?na
me=CVE-2018-11544 (Accessed: 16 February
2021).

CVE - CVE-2019-5625 (2019). Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?na
me=CVE-2019-5625 (Accessed: 16 February
2021).

CVE - CVE-2019-13099 (2019). Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?na

me=CVE-2019-13099 (Accessed: 16 February
2021).

CVE - CVE-2019-13100 (2019). Available at:
https://cve.mitre.org/cgi-bin/cvename.cgi?na
me=CVE-2019-13100 (Accessed: 16 February
2021).

Download Android Studio and SDK tools |
Android Developers (24 February 2021).
Available at:
https://developer.android.com/studio
(Accessed: 20 February 2021).

Send Anywhere - File transfer (no date).
Available at: https://send-anywhere.com/
(Accessed: 23 February 2021).

Android Debug Bridge (adb) (18 February
2021) Android Developers. Available at:
https://developer.android.com/studio/comma
nd-line/adb (Accessed: 20 February 2021).

Elenkov, N. (2021)
nelenkov/android-backup-extractor. Available
at:
https://github.com/nelenkov/android-backup-
extractor (Accessed: 19 February 2021).

Maven – Welcome to Apache Maven (25
February 2021). Available at:
https://maven.apache.org/ (Accessed: 20
February 2021).

Android Developers (24 February 2021)
Android Developers. Available at:
https://developer.android.com/topic/security/
data (Accessed: 18 February 2021).

Encrypting Your App’s Files | Apple
Developer Documentation (2021). Available
at:
https://developer.apple.com/documentation/u
ikit/protecting_the_user_s_privacy/encryptin

https://codersera.com/blog/top-7-vulnerabilities-in-android-applications-2019/
https://codersera.com/blog/top-7-vulnerabilities-in-android-applications-2019/
https://owasp.org/www-project-mobile-top-10/
https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://www.cypressdefense.com/blog/owasp-mobile-top-10-vulnerabilities/
https://www.cypressdefense.com/blog/owasp-mobile-top-10-vulnerabilities/
https://www.hiscox.com/
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11544
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11544
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5625
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5625
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13099
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13099
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13100
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13100
https://developer.android.com/studio
https://send-anywhere.com/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/nelenkov/android-backup-extractor
https://github.com/nelenkov/android-backup-extractor
https://maven.apache.org/
https://developer.android.com/topic/security/data
https://developer.android.com/topic/security/data
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/encrypting_your_app_s_files
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/encrypting_your_app_s_files

g_your_app_s_files (Accessed: 28 February
2021).

OWASP Mobile Security Testing Guide (02
October 2020). Available at:
https://owasp.org/www-project-mobile-securit
y-testing-guide/ (Accessed: 14 March 2021).

Pan, B. (2021) pxb1988/dex2jar. Available at:
https://github.com/pxb1988/dex2jar
(Accessed: 26 February 2021).

Java Decompiler (25 December 2019).
Available at: http://java-decompiler.github.io/
(Accessed: 26 February 2021).

Mobile App Security Made Quick and Easy |
Quixxisecurity (2021) Quixxi Security.
Available at: https://quixxisecurity.com/
(Accessed: 27 February 2021).

MobSF/Mobile-Security-Framework-MobSF:
Mobile Security Framework (MobSF) is an
automated, all-in-one mobile application
(Android/iOS/Windows) pen-testing, malware
analysis and security assessment framework
capable of performing static and dynamic
analysis. (no date). Available at:
https://github.com/MobSF/Mobile-Security-Fr
amework-MobSF (Accessed: 27 February
2021).

https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/encrypting_your_app_s_files
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/
https://github.com/pxb1988/dex2jar
http://java-decompiler.github.io/
https://quixxisecurity.com/
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF

Appendix A – Quixxi

Appendix B - MobSF

