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ABSTRACT
Provided with network data for analysis, this paper serves
to provide the reader with a recommendation into a
possible machine learning classifier that can be used in
order to categorize the provided packet data into either an
attack type or to classify it as a normal packet. This will be
portrayed by discussion of multiple machine learning
algorithms alongside their own strengths and weaknesses
that would be applied to this scenario. Also outlined in this
paper will be the phases of building an appropriate model
for this scenario including the different stages of the data
pipeline and different evaluation metrices that can be used
to test the recommended classifier.

Notation
Included in appendix A is a table including the terminology
and notation used throughout this paper.

1 Introduction
Machine learning is the process in which applications are
able to learn over time and hence improve their output
without the need for additional programming. Machine
learning has many real-world applications including image
or facial recognition, self-driving cars, stock market
predictions and many more. There are many different
types of machine learning methods, each of which have
their own problem to solve. Some of the main types of
machine learning include:

● Supervised Learning
○ Trains to match the inputted data to a

desired output based on training input
data. Includes labelled data as training
data.

● Unsupervised Learning

○ Works independently and discovers
patterns in its inputted data by itself.
Uses unlabelled data in its input.

● Semi-Supervised Learning
○ Uses a mixture of labelled and

unlabelled data together in order to train
the model.

● Reinforcement Learning
○ Minimizes the cost of an action to

maximize the cumulative reward by

using the output of the previous cycle on
the next in order to improve results.

Each of these types of machine learning can help to solve
different issues. One of these issues being classification of
data. Classification is the process of taking an input and
applying the correct label to it. An example of this would
be to classify emails as ‘spam’ or ‘not spam’. Classification
itself has multiple different types including:

● Binary
● Multi-Class
● Multi-Label
● Imbalanced

Each of these different types of classification algorithms
provide different outcomes when in use. Binary algorithms
class data into one of two classes, multi-class algorithms
are able to classify data into one of many output
classifications, multi-label algorithms allow for output data
to be classified as multiple classifications and imbalanced
classification algorithms are where the class distribution of
data is not balanced.

2 Background
Machine learning can have many applications, some of
these include roles in both the health and security of a
computer network. Machine learning can be used for
detecting possible stages of failure in a network and when
they are likely to occur in order to perform certain actions
to help prevent or solve the issue. Other security-based
applications include acting as a web application firewall or
packet classifier. Web-based machine learning firewalls
when compared to standard web-based firewalls offer
fewer false positives and an increase in true positives due
to the ability to ‘learn’ from the sample data (McCall,
2020). With machine learning becoming more available to
the masses through the development of different libraries
available for programming languages such as R and
Python, more and more applications of machine learning
are being developed and tested.

3 Recommendations
The data provided for this scenario is labelled data.
Labelled data is sample data with corresponding labels for
the each of the data’s attributes. For the data set provided,



to be able to classify the network packet data into the type
of attack, a supervised multi-class machine learning
algorithm can be used. This allows for the packets to be
classified as one of the many attack classes or the
‘normal’ class. Using this type of algorithms would allow
for classification of incoming attacks, which in turn, using a
rule-based system, could prevent the incoming attack
packets from reaching their destination. Using this form of
algorithm would also allow for the inputted data to be
classified as one of many classes instead of one of two
classes like it would in a binary classification algorithm.
Following are examples of machine learning algorithms
that could be used to classify the given network data
packets.

K-Nearest Neighbour
KNN works by taking the (K) number of closest
neighbouring data points to the query and comparing them
to figure out what the most frequent or average label is
that should classify the query.
Advantages of K-Nearest Neighbour included:

● Relatively, easy to understand and implement
● Can be used for both classification and

regression solutions
Applications of the K-Nearest Neighbour algorithm include
facial recognition and recommendation systems such that
are used in popular applications such as Netflix and
YouTube.

Decision Tree
Decision Tree algorithms work by breaking down the data
into branches repeatedly in relation of rules that can be
used to classify the data. During this process a top down
tree structure is developed with leaf nodes lying out the
outside of the branches indicating classes of data.
Decision trees have multiple different applications
including assessing marketing growth, medical diagnosis
assistance, fraud detection and much more.
An example of the structure of a decision tree can be seen
in the figure below.

Figure 1: Decision Tree Structure (Saxena, 2017)

Advantages of Decision Trees include:
● Simple decision rules make them easy to

understand
● Is robust when encountering edge case data from

training data.
● Classification can be quite fast once rules are

developed.
● Can be used for both classification and

regression solutions.

Random Forest Tree
RFT is a decision tree-based algorithm that creates and
implements multiple decision trees concurrently and then
merges them together in order to gain a greater accuracy
in the classification of the input data. Applications of
random forest trees include but are not limited to stock
market predictions, customer segmentation and IDS’s.
Advantages of Random Forest Trees include:

● Runs efficiently on larger databases
● Can handle a vast amount of input variables
● Can carry out both classification and regression

Artificial Neural Network

ANN’s work by simulating the biological network of the
human brain. Each network consists of node layers which
include an input layer, a number of hidden layers and an
output layer. Each node is connected to every node in the
next layer, with each node having a specific weight and
threshold. This means that if the threshold is surpassed,
then the corresponding node is activated. If a neural
network has more than one hidden layer in its structure,
then it is considered a deep neural network.An example
diagram of a neural network can be seen below.

Figure 2: Neural Network (How Do Neural Network
Systems Work?, 2020)



Advantages of Neural Networks include:
● Has the ability to store the input inside of the

network instead of being stored inside a
database.

● Has the ability to parallel process, allowing them
to complete multiple tasks at the same time.

ANN’s can have a wide variety of real-world applications
including facial recognition, object detection, signature
identification and autonomous vehicles.

Data Pipeline
In order to build an appropriate machine learning model to
classify the given network packet data, all aspects of the
data pipeline must be considered. This includes the data
pre-processing, training, analysis and communication of
results. Following in this paper, is an outline of the main
stages in the production of a model.

Data Ingestion/pre-processing

During this step, the incoming data is filtered and cleaned
to allow for use in the following stages. This is required
due to input data needing to be in a numeric format for the
algorithm to be able to process the data. Another reason
for filtering and pre-processing of data is that data may
possibly be missing before being processed by the
algorithm; this has to be resolved before being used as
training data.
Analysing the provided training and testing data files, it
can be seen that there are 45 different headings for the
training and testing data. These headings are included in
appendix B. These headers require to be pre-processed
and sorted into numerical data. It is required to be
converted into numerical data in order for the model to
train. This can be carried out by using the factor() function
in R. This converts non-numerical data into numerical data
by assigning each unique string in the column a number.
All other numerical data can be encoded using the
as.numeric(as.character()) function in R. Included in
appendix C is an example of how the provided input data
can be pre-processed in R.

Modelling/Training

Training the model requires inputting training data into the
algorithm. The training data in this case is labelled data
with the correlating desired output class stored within the
training data. During this step, depending on the algorithm
chosen, different aspects of the learning cycle can be
altered for increased accuracy or speed.
An example, if a neural network was chosen, there are
many different hyperparameters that can be altered in
order to give better or worse results, faster or slower

speeds and more. These attributes of a model are reliant
on the type of training input data and how the
hyperparameters are configured.
Some of the hyperparameters than can be altered are the
hidden layers size, which is the number of neurons withing
a single layer, the learning rate and the alpha number,
which is the regularisation term. Using a mixture of
previous knowledge and trial and error, the accuracy of the
model can be increased by tweaking the vast amount of
different hyperparameters that are available. Included in
appendix D is example code, in Python, of using a neural
network to train a model with a set of hyperparameters.

Analysis

For the analysis stage of the pipeline, testing can be
carried out in order to verify that the model can categorize
the data as required. This can be carried out using the
testing data which is in the same format as the training
data but has been put aside in the initial steps of the
procedure to allow for verification that the model is running
correctly once trained. The ratio for splitting the training
and testing data is normally an 80/20 split. This allows for
the model to use unknown data during testing to verify that
it can correctly classify the packet data into their
corresponding attack category. Depending on the output of
the model, such as mentioned above, hyperparameters
may be required to be tweaked in order to improve the
accuracy of results.

Communication of Results

In order to communicate the results from the created
model, different evaluation metrics can be used. These
metrics can portray many different aspects including
accuracy, precision and error rates of the trained models.
Possible evaluation metrics could include a confusion
matrix, a PRC graph, and a ROC graph. Following is a
description and example of each of the proposed
evaluation metrics.

Confusion Matrix

A confusion matrix allows for visualization of how the
model is classifying the inputted data. This is done by
plotting the actual classification of the data on the top axis
of the matrix with the predicted class down the side axis.
This allows for the TP, TN, FP and FN values to be
reported on the same graph. This can be done for both
binary and multi-class classification algorithms. The
example included in figure 3 below shows how a
multi-classification confusion matrix would be implemented
in a multi-class classification algorithm.



Figure 3: Example Multi-Class Confusion Matrix (Mohajon,
2020)

Taking the example of the Apple class from the above
matrix, the values for TP, TN, FP and FN can be
calculated as follows:

𝑇𝑃 = 7
𝑇𝑁 = 2 + 3 + 2 + 1 = 8

𝐹𝑃 = 8 + 9 = 17𝐹𝑁 = 1 + 3 = 4
This form of evaluation can be scaled up and down to suit
the number of classes that are required by the inputted or
outputted data.
In relation to the data provided, the confusion matrix would
be more complex and much larger in size due to the
number of output classes that are available for the data.
However, the main principles and calculations behind it
would stay the same. An example of a confusion matrix for
classifying network packet data can be seen in appendix
E.

PRC graph

A PRC graph is a plot of precision vs recall, where the
value for precision represent the positive predictive value
and the value for recall correlates to the sensitivity value.
To calculate the positive predictive value and the
sensitivity, the equations as seen below can be used.

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 = 𝑇𝑃
𝑇𝑃+𝐹𝑃( )

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁( )

As can be seen in the figure below, as the recall value
approaches one, the precision drops.

Figure 4: Example PRC graph (Self-Created)

Calculating the AUC represents how well the classifier
performs the task given. Taking the AUC and multiplying
the value by one hundred, provides a percentage for this
value.

ROC graph

An ROC graph is plotted of True Positive Rate (TPR) vs
False Positive Rate (FPR). The terms TPR and FPR can
be seen defined as below.

Figure 2: Defining Terms (Narkhede, 2021)

The AUC represents the ability the model has in
distinguishing the different classifications of attack. Due to
this, the accuracy value of the output of the model can be
portrayed using this method. The value outputted is in the
range of 0.00 to 1.00, multiplying this value by 100 gives
you the accuracy percentage. This method can also be
used to analyse the output of a multi-class model such as
the ones recommended above by plotting a curve for each
of the individual classifications. An example curve can be
seen plotted below in figure 5.

Figure 5: Example ROC graph (Self-Created)

4.   Limitations & Challenges

Although the algorithms recommended above are able to
carry out the multi-class classification that is required of
this data, each of the algorithms have their own
disadvantages that could impact the output. Some of the
disadvantages and limitations can be seen described
below.



Decision Trees:

● Can be prone to overfitting when applied to a full
data set due to results possibly being more
complex than is required. Overfitting is where the
algorithm develops hypotheses in which reduce
the error present in the training set but increase
the error present in the testing set.

● If there is a small change in the data set, this can
cause a need for a large change in structure
which causes instability.

● A single decision tree may not be as accurate
and would therefore require multiple, causing
need for random forest trees.

Random Forest Tress:
● Can be prone to overfitting
● Slows in its progression due to each individual

decision tree
● Can require more computational and power

resource due to the number of trees being
calculated.

Neural Networks:
● Can be quite hardware intensive and therefore

could require more computational power.
● Can be considered complex to troubleshoot if

something was to go wrong.
● Normally more complex than other machine

learning algorithms.
● Complex issues can take a considerable amount

of time to develop.
K-Nearest Neighbours:

● As the data set increases in size, the speed of
the algorithm decreases drastically.

● Has no capability when it comes to dealing with
missing values in the data set.

● Can require a large amount of computational
power due to the need to store all of the training
data.

Each of these disadvantages and limitations must be
taken into consideration with the advantages each
algorithm presents in order to find the best match that may
suit the required scenario.

5. Conclusion
To conclude this paper, there are multiple options that are
available when it comes to training a multi-class
classification model. Provided in this paper was four
algorithms that could be used, with their own advantages
and disadvantages. The advantages and disadvantages of
each algorithm must be considered before implementation

to allow for the best result possible. With this in mind,
following the procedure described above should allow for
the implementation and evaluation of a multi-class
classification model.
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Appendix A - Notation
Notatio
n

Meaning

RFT Random Forest Tree
NN Neural Network
KNN K-Nearest Neighbor
ANN Artificial Neural

Network
PRC Precision Recall

Curve
ROC Receiver Operating

Characteristic
TPR True Positive Rate

TP True Positive

FP False Positive

TN True Negative

FN False Negative

FPR False Positive Rate

AUC Area Under Curve

IDS Intrusion Detection
Systems

Appendix B – Input Data Headings
id,dur,proto,service,state,spkts,dpkts,sbytes,dbytes,rate,sttl,dttl,sload,dload,
sloss,dloss,sinpkt,dinpkt,sjit,djit,swin,stcpb,dtcpb,dwin,tcprtt,synack,ackdat,
smean,dmean,trans_depth,response_body_len,ct_srv_src,ct_state_ttl,ct_d
st_ltm,ct_src_dport_ltm,ct_dst_sport_ltm,ct_dst_src_ltm,is_ftp_login,ct_ftp_
cmd,ct_flw_http_mthd,ct_src_ltm,ct_srv_dst,is_sm_ips_ports,attack_cat,lab
el

Appendix C – Pre-processing of Input Data
in R
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colnames(data) =
c("id","dur","proto","service
","state","spkts","dpkts",
"sbytes", "dbytes", "rate",
"sttl", "dttl", "sload",
"dload", "sloss", "dloss",
                   "sinpkt",
"dinpkt", "sjit", "djit", "swin",
"stcpb", "dtcpb", "dwin",
"tcprtt", "synack",
                   "ackdat",
"smean", "dmean",
"trans_depth",
"response_body_len",
"ct_srv_src", "ct_state_ttl",
                   "ct_dst_ltm",
"ct_src_dport_ltm",
"ct_dst_sport_ltm",
"ct_dst_src_ltm",
"is_ftp_login",
                   "ct_ftp_cmd",
"ct_flw_http_mthd",
"ct_src_ltm", "ct_srv_dst",
"is_sm_ips_ports",
"attack_cat", "label")

# Preprocessing the data
data$id =
as.numeric(as.character(d
ata$id))
data$dur =
as.numeric(as.character(d
ata$dur))
vdata$proto =
factor(data$proto)
data$service =
factor(data$service)
data$state =
factor(data$state)
data$spkts =
as.numeric(as.character(d
ata$spkts))
data$dpkts =
as.numeric(as.character(d

ata$dpkts))
data$sbytes =
as.numeric(as.character(d
ata$sbytes))
data$dbytes =
as.numeric(as.character(d
ata$dbytes))
data$rate =
as.numeric(as.character(d
ata$rate))
data$sttl =
as.numeric(as.character(d
ata$sttl))
data$dttl =
as.numeric(as.character(d
ata$dttl))
data$sload =
as.numeric(as.character(d
ata$sload))
data$dload =
as.numeric(as.character(d
ata$dload))
data$sloss =
as.numeric(as.character(d
ata$sloss))
data$dloss =
as.numeric(as.character(d
ata$dloss))
data$sinpkt =
as.numeric(as.character(d
ata$sinpkt))
data$dinpkt =
as.numeric(as.character(d
ata$dinpkt))
data$sjit =
as.numeric(as.character(d
ata$sjit))
data$djit =
as.numeric(as.character(d
ata$djit))
data$swin =
as.numeric(as.character(d
ata$swin))
data$stcpb =
as.numeric(as.character(d



ata$stcpb))
data$dtcpb =
as.numeric(as.character(d
ata$dtcpb))
data$dwin =
as.numeric(as.character(d
ata$dwin))
data$tcprtt =
as.numeric(as.character(d
ata$tcprtt))
data$synack =
as.numeric(as.character(d
ata$synack))
data$ackdat =
as.numeric(as.character(d
ata$ackdat))
data$smean =
as.numeric(as.character(d
ata$smean))
data$dmean =
as.numeric(as.character(d
ata$dmean))
data$trans_depth =
as.numeric(as.character(d
ata$trans_depth))
data$response_body_len =
as.numeric(as.character(d
ata$response_body_len))
data$ct_srv_src =
as.numeric(as.character(d
ata$ct_srv_src))
data$ct_state_ttl =
as.numeric(as.character(d
ata$ct_state_ttl))
data$ct_dst_ltm =
as.numeric(as.character(d
ata$ct_dst_ltm))
data$ct_src_dport_ltm =
as.numeric(as.character(d
ata$ct_src_dport_ltm))
data$ct_dst_sport_ltm =
as.numeric(as.character(d
ata$ct_dst_sport_ltm))
data$ct_dst_src_ltm =
as.numeric(as.character(d

ata$ct_dst_src_ltm))
data$is_ftp_login =
as.numeric(as.character(d
ata$is_ftp_login))
data$ct_ftp_cmd =
as.numeric(as.character(d
ata$ct_ftp_cmd))
data$ct_flw_http_mthd =
as.numeric(as.character(d
ata$ct_flw_http_mthd))
data$ct_src_ltm =
as.numeric(as.character(d
ata$ct_src_ltm))
data$ct_srv_dst =
as.numeric(as.character(d
ata$ct_srv_dst))
data$is_sm_ips_ports =
as.numeric(as.character(d
ata$is_sm_ips_ports))
data$attack_cat =
factor(data$attack_cat)

Appendix D – Neural Network
Hyperparameters
clf=
MLPClassifier(hidden_layer_sizes=(100,),
activation='relu', solver='adam',
alpha=0.0001, batch_size='auto',
learning_rate='constant',
learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True,
random_state=None, tol=0.0001,
verbose=True, warm_start=False,
momentum=0.9,
nesterovs_momentum=True,
early_stopping=False,
validation_fraction=0.1, beta_1=0.9,
beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10)

Appendix E – Example Confusion Matrix




