
Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Keeping Data Secure in 2020
Ensuring data is kept safe

Jonah McElfatrick

Note that Information contained in this document is for educational purposes.

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Executive Summary

This paper will demonstrate to the reader, how to keep data secure in the modern day. This will include
how to transmit data securely through different methods as well as keeping data secure when being
stored in a database or file system. It is important to understand the differences between secure
transmission protocols and un-secure transmission protocols and how one can be more secure than the
other. In this paper it can be seen the difference between secure and unsecure methods of transporting
data. Storing data is just as important if not more important than transmitting data. Securing data when
it is being stored is vital for good security measures. Stored data is usually the main focus for an attacker
as it gives them more time to attempt to steal the data as the data is not been moved or transmitted.

A demonstration is carried out to show the difference between HTTP and HTTPS. A network protocol
analyzer was used to capture traffic in transit over a network and therefore allows for a comparison
between security methods used by both HTTP and HTTPS to be able to see which one would be
considered more secure and why.

A piece of software called Kleopatra is used and demonstrated using both the command line interface
and the graphical user interface in this paper as an alternative way to use the same secure encryption
method that is used by HTTPS. This allows for a greater understanding of what happens when the data is
being sent behind the scenes of a web browser.

As Kleopatra and HTTPS use the same encryption method, the mathematics behind the encryption
method used by both methods is explored and explained to give the reader a more in depth
understanding of how the data is being secured and how reliable and robust it is.

Storing data securely is also a large part of the data’s life along with the transmission of data. Therefore
in this paper, a comparison between different modern hashing algorithms has been carried out. This
included researching any existing issues with the hashing algorithms, along with individual testing with
an implemented password cracker to observe which hashing algorithms could possibly take longer
and/or are harder to crack. It was observed that the MD5 hashing algorithm is no longer suitable for
modern secure hashing of data.

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

+Contents

Introduction 1

Background 1

Aim 2

Procedure & Results 3

Overview of Procedure 3

HTTP & HTTPS 4

Using HTTP 4

Using HTTPS 7

Alternative transmission Method – gpg4win Example 11

GUI (Graphical User Interface) 14

Generating Key Pair 14

Exporting Public Key 17

Distributing Public Key 19

Importing the Public Key 19

Encrypting a file 21

Decrypting the file 22

CLI (Command Line Interface) 24

Generating Key Pair 24

Sending Public Key and Encrypting Data 27

RSA Encryption 31

Storing data securely 33

Discussion 44

General Discussion 44

Countermeasures 44

Conclusions 44

Future Work 45

References 46

Appendices 48

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Appendix A – OpenPGP certificate 48

Appendix B – Public Key 49

Appendix C – Multi-Threaded Password Cracker 51

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

1 INTRODUCTION

1.1 BACKGROUND

In the 21st century, the world revolves around computers. From your average desktop computers, to
smartphones to IOT (Internet of Things) devices such as remote-controlled lightbulbs, each one of these
devices communicates with each other and transfers and stores data. In the modern day, there is data
stored about almost everyone and everything on the planet. This can range from pricing of items on an
online marketplace, what that odd-looking flower is in your back garden, who that actor was in your
favorite movie, to more personal and sensitive information about people themselves. Taking online
marketplaces as an example, most users that would be members of a marketplace website would have
details such as their name, email, password and bank account details registered to that account. All of
these details are sent across a network and then stored by the marketplace website company on their
servers. In turn, this means that pressure is then placed onto the companies shoulders to keep this
information safe from any malicious attacker, both in data transit and storage. One of the most common
pieces of information that is considered sensitive information and is used for almost every kind of
account is passwords. With passwords being used to access almost every form of modern account it is
one of the main focuses of attackers to gain access to. This would in turn allow the attacker to try other
accounts and repeat the process. Wired.com reported “Now, it seems, someone has cobbled together
those breached databases and many more into a gargantuan, unprecedented collection of
2.2 billion unique usernames and associated passwords and is freely distributing them” (Greenberg,
2020) This indicates the need to ensure that sensitive information such as passwords are kept secure and
are unreadable to any attacker that may gain access to them.

In previous years there was a lower required level of security, but as computers and technology have
advanced and developed over the years, so has the increase in need for more complex and thorough
security methods. Network traffic can now be captured with most modern devices and some free
software. Lower levels of encryption and hashing methods are now outdated and can be cracked with
consumer level hardware. With this possible, more in-depth and complex security methods have had to
be developed and implemented to keep data secure from prying eyes.

There are many different ways to ensure that your data is kept safe when both being transported and
stored. These methods range in difficulty to use and understand. Encryption can be used to obscure
sensitive data being transported between devices. Encryption is the method of obscuring data by
passing it through a mathematical algorithm. The most common method to encrypting data traffic is
using HTTPS. This is due to it being the standard for transmitting data through a web browser to a web
server. This is to keep the user’s data safe. HTTPS uses the TLS (Transport Layer Security) protocol,
formerly known as SSL (Secure Socket Layer), this protocol uses two different keys in an asymmetric key
structure called RSA (Rivest-Shamir-Adleman) encryption. This method is also commonly known as
public-key encryption. The two keys consist of a private key and a public key. The private key is linked to
the owner, in this case the website, and is held on the webserver to decrypt incoming traffic to the
server. The public key is distributed by the webserver to whoever is wanting to communicate with it. This
allows the client to encrypt and send data securely to the server which will then decrypt the data.

1 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

However, even though this secures the data when being transmitted to the web server, when the data is
being stored in the web server then a different method is required to secure the data. Hashing
algorithms are a method of storing sensitive information inside of database’s without being in a plain
text form that is easy to read if accessed. This is carried out by passing in a value through the one-way
mathematical algorithm. This means that the hash is very difficult, almost impossible to reverse. There
are varying levels of complexity when it comes to hashing algorithms. Some of the lower level
complexity algorithms, MD4, MD5 and a mid-range algorithm SHA-256 are among the most commonly
known algorithms. MD4 and MD5 are commonly known to be used to verifying the integrity of
downloaded files from the internet to ensure that the file has not been altered in transit. SHA-256 is the
basic standard of what should be used to store sensitive information. There are more complex
algorithms such as SHA-384 and SHA-512, these are more complex versions of SHA-256 and are
considered more secure to use. These are analyzed and discussed later in the paper.

1.2 AIM

The aims of this project are:

● To allow the reader to gain an understanding of why keeping data hidden and stored correctly is
imperative for secure data handling.

● To demonstrate different methods on how to securely transmit data over a network.
● To understand the mathematics behind RSA encryption used by HTTPS and Kleopatra.
● To demonstrate how to store sensitive data, such as passwords, securely and how attackers may

try to break any attempt to obscure the data.

2 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

2 PROCEDURE & RESULTS

2.1 OVERVIEW OF PROCEDURE

In the following procedure, it will explain different methods in keeping data safe while being transmitted
or being stored on a computer. This will include transmitting data through a web browser, transmitting
data privately and then storing sensitive data such as passwords on a computer or database. The
procedure contains:

● A demonstration of the difference between using HTTP and HTTPS when transmitting data over
a web browser and how one is better than the other.

● A demonstration on how to use the Kleopatra software in conjunction with Gpg4win to send
encrypted data through other methods than through a web browser.

● Both HTTPS and Kleopatra use RSA encryption, following the demonstrations on HTTPS and
Kleopatra, the mathematics behind RSA encryption is explored and explained to give an
understanding of how it is secure to encrypt data using this method.

● A comparison and demonstration between different hashing algorithms for securely storing data
effectively and correctly. A password cracker implementation to demonstrate which hashes are
easier to crack than others.

3 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

2.2 HTTP & HTTPS

HTTPS uses SSL certificates along with RSA encryption to ensure that the users’ data is kept secure when
being transmitted over a network. HTTP does not have any of these traits. HTTP uses no encryption to
request and send data. This means that the user’s data is sent over a network without being encrypted.

To show the difference between captured traffic using the two different protocols, HTTP and HTTPS, a
piece of software called Wireshark was used. This allows for the packets on a network to be captured
and possibly viewed depending on the protocol being used.

2.2.1 Using HTTP

The first step in analyzing HTTP packets is to navigate to a website using HTTP. In this case a local
webserver and website were being used to demonstrate this. The website used can be seen in figure 1
below.

Figure 1: HTTP website

From here, Wireshark was launched. A list of connections can be seen on the home screen of Wireshark.
Since the website that is being monitored is on the local machine, the loopback connection is the one we
are interested in. This can be seen I figure 2 below.

4 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 2: Wireshark Home Page

Once the loopback traffic capture has been selected, then navigating back to the website. Login details
are entered into the login portal. This can be seen in figure 3 below.

Figure 3: Login Portal

Going back to Wireshark, the traffic we are interested in is HTTP traffic. A filter can be placed on the
captured packets. This can be seen in figure 4 below where the filter of ‘http’ was used.

Figure 4: Filter HTTP

Clicking on the first packet in the list, it can be seen that the username and password that were entered
can be seen in plain text. This can be seen in figure 5 below where the username reads
‘hacklab@hacklab.com’ and the password reads ‘Hacklab1’.

5 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 5: Captured Details

There is another method to view any data that has been captured if there are many more packets and
are not able to find the exact one that represents the posting of the variables from the login page. This
can be completed by navigating to the top menu and clicking on Analyze -> Follow -> HTTP Stream. This
can be seen in figure 6 below.

Figure 6: Route to HTTP Stream

After following the HTTP stream, a window should appear with all the HTTP information that was
captured from the packets. As can be seen highlighted in figure 7 below, the username and password

6 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

that were entered into the prompted fields are clearly visible in plaintext with no security precautions to
get past.

Figure 7: Captured HTTP Stream

2.2.2 Using HTTPS

The first step in analyzing HTTPS packets in booting up Wireshark and capturing packets from the relative
connection point. A list of connections will be displayed at startup. This can be seen in figure 8 below.

Figure 8: Wireshark Home Screen

In this case the connection point is Ethernet. Clicking on this option then starts the capture process of all
traffic going through the connection. Navigating to a website such as www.Amazon.co.uk and viewing
the navigation bar shows that a padlock is visible. This can be seen in figure 9 below. This indicates that
the website is using HTTPS.

7 | Page

http://www.amazon.co.uk

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 9: HTTPS Website

Once navigating to the login page and entering login details, these packets should be captured by
Wireshark. Since HTTPS runs using SSL (Secure Socket Layer) encryption then a filter can be put in place
to filter just the HTTPS traffic. This can be seen in figure 10 below.

Figure 10: Filter SSL

From here, you are able to view any content that can be deciphered by viewing the TLS (Transport Layer
Security) stream. This can be done by navigating to the following Analyze -> Follow -> TLS Stream. This
can be seen in figure 11 below.

8 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 11: Route to TLS Stream

A window should appear with any information that can be intercepted and displayed. As can be seen in
figure 12 below, there is no information that can be seen due to the increase in security and encryption
that is used.

9 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 12: Captured Data

10 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

1.1 ALTERNATIVE TRANSMISSION METHOD – GPG4WIN EXAMPLE

HTTPS works well for traffic that is being sent through a web browser, but what is you are sending data
over a local network or using another form of transmitting the data to the receiver that may not use the
same security protocols. RSA can be used out with a web browser as well. This method of encryption is
commonly known as public-key encryption. The basis behind public key cryptography is using two ‘keys’,
a private and a public key. One computer can hold the private key to decrypt data, and this computer can
distribute a paired public key to anyone it may choose to allow for data to be encrypted for the paired
private key. To be able to carry out and send files using public key encryption, the following procedure
can be used.

11 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

The first step is to download the Gpg4win software from www.gpg4win.de/index.html. The page that
should appear can be seen below in figure 13.

Figure 13: Gpg4win Website

Once the installer is downloaded, install the application with the following choices of components,
including the software Kleopatra, this can be seen in figure 14 below.

12 | Page

http://www.gpg4win.de/index.html

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 14: Setup

To ensure that the program has installed successfully. Opening command prompt and typing the
command ‘gpg --version’ should display the following screen.

13 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 15: Verifying Install

From here there are two different ways to use the software. There is the command line interface or the
graphical interface. These have both been covered in the following sections.

2.2.3 GUI (Graphical User Interface)

2.2.3.1 Generating Key Pair
The first step in using the graphical interface of gpg4win is to use the software that was previously
installed, Kleopatra. Running this software, the following screen should appear.

14 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 16: Kleopatra Home Screen

Using the ‘New Key Pair’ button, another window will pop up asking for a name and email for the private
key. The entries ‘Johnny’ and ‘johncreee@gmail.com’ were used. This can be seen in the figure below.

Figure 17: Entered Details

15 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Selecting advanced options from the same window displays the more detailed options of the key pair
that is to be generated. All values were let untouched apart from the date, unchecking this box allows
the for key pair to be used indefinitely. This can be seen in figure 18 below.

Figure 18: Technical Details

Clicking ‘OK’, then ‘Next’, then ‘Create’, a window will appear asking for a passphrase. The value of
‘Hacklab123’ was used in this case and can be seen entered into the fields below.

Figure 19: Entered Passphrase

16 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

The next screen should indicate that the key pair has been generated successfully. This can be seen
below.

Figure 20: Successful Creation of Key

2.2.3.2 Exporting Public Key
Now that the key pair has been created, the next step is to export the public key. This can be completed
by clicking on the new key created and then going to the top navigation bar of the software and clicking
the button lapelled ‘Export’. A save window will appear; in this case the file was saved as ‘pubKey.asc’ in
the desktop directory. This can be seen carried out below.

17 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 21: Saving Public Key

Opening the file in notepad ++, it can be seen that the file does contain the public key. The contents of
the file can be seen below.

18 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 22: Public Key

2.2.3.3 Distributing Public Key
The next step is to distribute the public key to another computer to allow for data to be encrypted using
the new computer. This can be done my email or any other method of transferring files. In this case a
USB stick was used to transfer the file from one computer to the other.

2.2.3.4 Importing the Public Key

Note: From here on in section 2.3.1, there is two computers. One will be referenced as desktop computer,
the one with the private key, and the other a laptop which will have the public key.

Once the file has been transferred to the laptop form the desktop computer, running Kleopatra on the
laptop, the same starting screen should be present as previously. The option ‘Import’ should be present.
Using this option and selecting the file that has been transferred over, the following screen should
appear.

19 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 23: Create New Key Prompt

Selecting ‘Yes’, allows for the creation of a key pair on the laptop. The same process that was seen
previously on the desktop computer is carried out. The entered details were as followed:

Name: Frank

Email: Frnak@gmail.com

Passphrase: Frank123

Once the local key pair had been created, the option to certify the imported key is shown as can be seen
below in figure 24.

20 | Page

mailto:Frnak@gmail.com

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 24: Certify Key

Selecting ‘Certify’ and then entering the passphrase for the new ‘Frank’ user completes the importation
process.

2.2.3.5 Encrypting a file

To encrypt a file, first a message must be crafted. A simple text file with some text inside will do the trick.
A text file labelled TestMessage.txt was created. To encrypt the created text file, the ‘Sign/Encrypt…’
button at the top navigation bar of the window is selected. This can be seen in figure 25 below.

Figure 25: Encrypt Option

After selecting the button, a window will appear to select the file in which you would like to encrypt.
After selecting the created text file, the following window should appear. From here the option to
‘Encrypt for others:’ is selected. Entering the username ‘Johnny’ should give the option to select the user
‘Johnny’ from the drop-down list. This can be seen below.

21 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 26: Encryption Options

Once all the necessary fields have been filled out, continuing the process encrypts the file creating
another file called ‘TestMessage.txt.gpg’.

From here, the ‘TestMessage.txt.gpg’ is sent back to the desktop computer to then be decrypted.

2.2.3.6 Decrypting the file

To decrypt the ‘TestMessage.txt.gpg’ file, selecting the ‘Decrypt/Verify…’ button in Kleopatra opens a
window to select the encrypted file. Once selected the file, the passphrase for the ‘Johnny’ user must be
entered. Once the passphrase has been entered, the following window should appear indicating that the
file has been decrypted successfully.

22 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 27: Successful Decryption

Saving the file to the desktop and opening it in Notepad ++, the contents of the original text file can be
seen. The contents can be seen below.

Figure 28: Plain Text Message

23 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

2.2.4 CLI (Command Line Interface)

2.2.4.1 Generating Key Pair
The first step in using gpg4win is to generate a private key. This can be done by using the command ‘gpg
--full-generate-key’. This will display the screen as shown below.

Figure 29: Generate Key

From here, the selection made is ‘1’ for ‘RSA and RSA (default)’. The keysize will then be asked, for
example purposes the default value of 2048 will be used, but a bigger keysize could be used in practice.
This can be seen below.

Figure 30: Type of Key

Then the time to live of the key is asked for, this can be days, weeks, months, years or indefinitely. For
indefinitely ‘0’ is entered. This was used in this case. This can be seen below.

24 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 31: Keysize

A confirmation message will appear on screen to confirm that the key is to last indefinitely. Typing ‘y’
passes this check. From there, details are required for linking the key. As can be seen in the screenshot
below test details were entered for this example.

Figure 32: Entered Details

Once the details are correct, entering ‘o’ and pressing enter confirms the details and a window will
appear prompting for the entry of a passphrase. In this case the passphrase ‘Hacklab123’ was used. This
was entered into the window as can be seen below in figure 33.

Figure 33: Passphrase

Once completed the following message should appear in the command prompt.

25 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 34: Successful Creation of Key Pair

This indicates that a public and private key have been signed to the created account and where the
certificate has been stored on the local machine.

To ensure that the key has been created successfully, entering the command ‘gpg --list-keys’ will display
the following screen with the list of stored keys that have been generated.

Figure 35: Confirm Key Creation

Navigating to the file path specified in figure 35 above, the revocation certificate can be seen. The file
contents can be seen in appendix A.

The next step is to export the public key to be able to distribute it to other people. This can be done
using the following command: ‘gpg --armor --output “PublicKey.txt” --export “Johhny”. This indicates to
output the public key from the user “Johnny” to the file “PublicKey.txt” in the current directory. The
command can be seen being used in the screenshot below.

Figure 36: Output Public Key

The full contents of the PublicKey.txt file can be found in appendix B.

26 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

2.2.4.2 Sending Public Key and Encrypting Data

Note: From here on in section 2.3.2, there is two computers. One will be referenced as desktop computer,
the one with the private key, and the other a laptop which will have the public key.

Now that a public key has been generated and saved. To then start using it, first the key must be
distributed to who is required to send data to you. In this case, another computer was installed with the
same software using the same method, but with no sets of keys registered.

To import the key onto the laptop, first the PublicKey.txt file was copied over from the Desktop. From
here, typing the command ‘gpg –import “PublicKey.txt”’ imports the public key from the user ‘Johnny’.
This can be seen below in figure 37.

Figure 37: Import Public Key

Once the key has been imported, the ‘trust’ attribute of the key needs to be configured. To configure the
program to trust the imported key, the command ‘gpg --edit-key “Johnny” is used. This will open the gpg
edit command prompt. From here typing ‘trust’ then choosing the option ‘5 = I trust ultimately’, the
prompt will then ask If you are sure you would like to trust this key completely. Typing ‘y’ confirms the
edit. The whole process can be seen in figure 38 below.

27 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 38: Editing Trust Configuration

To encrypt a message, first open notepad and type in a message. In this case, the file was saved as
“TestMessage.txt”. Using the command ‘gpg –armor –recipient “Johnny” –output “Message.asc”

28 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

–encrypt “TestMessage.txt”’ can be used to encrypt the created message file. The command can be seen
in figure 39 below.

Figure 39: Encrypting Message

This will create a file called ‘Message.txt.asc’. This can be seen in the screenshot below.

Figure 40: Outputted File

From here, the ‘Message.txt.asc’ file must be transferred over to the desktop computer. In the real
world, this can be done by email or USB stick or any other method of transferring files. Once the file has
been moved over, in the command prompt, using the command ‘gpg --decrypt-files “Message.txt.asc”’,
will decrypt the file. This can be seen in the screenshot below labelled figure 41.

Figure 41: Decrypt File

A password prompt may pop up for the ‘Johnny’ user, in which the password implemented was
‘Hacklab123’. This can be seen below.

29 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 42: Enter Private Key Passphrase

The message file should then be decrypted, and another file should have been generated with the
message inside. This generated file can be seen in figure 43 below.

Figure 43: Decrypted File

Opening the file, it can be seen that the message has been decrypted successfully. The message reads
‘Hello, this is a test from the laptop!”. The file and contents can be seen in the figure below.

Figure 44: Plain Text File

30 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

1.2 RSA ENCRYPTION

Both HTTPS and Kleopatra uses an asymmetric key structure protocol through SSL/TLS, this is known as
the RSA encryption method. This method of encryption uses a public key to encrypt the data and a
private key to decrypt the data.

To craft the public key, the algorithm uses two prime numbers (p & q), calculates the product of them (n)
and the result is one of two parts of the public key. The second part is calculated by taking an exponent
(e), that is co-prime with (n). This means that (n) and (e) have no common factors. The values (n) and (e)
are used in conjunction with each other to create the public key.

The first step in crafting the private key, the totient of (n) is calculated. This is the product of (p-1) and
(q-1). The next step is to create the key itself; this is done by taking the totient calculated, multiplying it
by two, adding one and dividing it by (e). The value calculated is assigned (d) and is the value for the
private key.

From here, to encrypt the data. The equation is used. This is where (e) and (n) have𝑐 = 𝑀𝑒𝑚𝑜𝑑 𝑛
already been calculated for the public key, (M) is the unencrypted message and (c) is the encrypted
message.

To decrypt the message, the equation is used. This is where (n) and (d) have already been𝐷 = 𝑐𝑑𝑚𝑜𝑑 𝑛
calculated for the private key, (c) is the encrypted message and (D) is the decrypted message.

Below is a working example of how the mathematics work. To make it easier to follow, smaller numbers
have been used. In practice, larger numbers would be used to make it harder to guess and allow it to be
more secure.

Generating Public Key

Let’s take p = 67, q = 79

𝑛 = 𝑝𝑞

𝑛 = 67 × 79

𝑛 = 5293

Small exponent e:

Must be coprime with n

Not a factor of n

1 < e < ϕ(n)

Let’s take: e = 7

Generating Private Key

Calculate :ϕ(𝑛)

31 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

ϕ(𝑛) = (𝑝 − 1) (𝑞 − 1)

ϕ(𝑛) = (66) (78)

ϕ(𝑛) = 5148

Calculate Private key d:

𝑑 = 2 ϕ 𝑛()()+1
𝑒

𝑑 = 2 5148()+1
7

𝑑 = 10297
7

𝑑 = 1471

Encrypting Data with public key

Encrypt the numbers ‘1413’

Calculate Encrypted data:

𝑐 = 𝑀𝑒𝑚𝑜𝑑 𝑛

𝑐 = 14137𝑚𝑜𝑑 5293

The mod function present in the equation above means that

𝑐 = 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 1413*1413*1413*1413*1413*1413*1413
5293{ }

This can also be calculated using the Extended Euclidean Algorithm

𝑐 = 11245923707920225356717 𝑚𝑜𝑑 5293

𝑐 = 1350

Decrypt the data

So far, we have c being the encrypted data, d being the primary key and n being the public key.

Calculate D the Decrypted data:

𝐷 = 𝑐𝑑𝑚𝑜𝑑 𝑛

𝐷 = 13501471𝑚𝑜𝑑 5293

𝐷 = 1413

D = 1413, The decrypted message.

32 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

M = 1413, The starting unencrypted message.

1.3 STORING DATA SECURELY

Not only is transmitting data important but storing data is one of the most important parts of data
security. This is due to the data being sat in one place, this makes it a target for malicious attackers as
they have one point to attack rather than trying to grab the data in transit. If a website was using HTTPS
to securely transmit data to and from the webserver, what happens if sensitive information is needing to
be stored on the webserver? Like a password for a login portal for example. One of the most common
pieces of data that is targeted is passwords, this is due to the information and accounts that could be
accessed using these passwords. To try and store passwords safely and securely, hashing algorithms were
developed to obscure the representation of the password. There are many different hashing algorithms
available in the present day. In this paper, the following hashing algorithms will be discussed: MD5
(Message-Digest 5), the SHA (Secure Hashing Algorithm) family including SHA-224, SHA-256, SHA-384,
SHA-512. Each one of these hashing algorithms can hash sensitive information and appear to obscure
the data, however some of the algorithms are more secure than others.

The MD5 hashing algorithm was first implemented in 1991 by Ronald Rivest. When released, the hashing
algorithm was widely used for data security. Although now in the present day, the algorithm is found to
be unfit for securing data. This is due to MD5 being a fast algorithm to use and run. MD5 produces a
hash that is 128-bits in size, this is a relatively small hash when compared to other algorithms.

The SHA family of hashing algorithms have been in development for many years. The family consists of
SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512. The first four of these from SHA-0 to SHA-256 work
on a 512-bit message segment divided into 32-bit words and the last two working on a 1024-bit message
segment divided into 64-bit words. Each of the algorithms produce a different length of output. SHA-1,
which replaced SHA-0, produces an output of length 160 bits. SHA-224 produces a 224-bit output,
SHA-256 a 256-bit output, SHA-384 a 384-bit output and SHA-512 a 512-bit output.

Taking into consideration the above hashing algorithms. Looking at the hash of a simple string can give
the idea of a level of security they provide. Listed below is the hashing algorithms with the simple string
‘Hello’ being hashed.

MD5 - 8b1a9953c4611296a827abf8c47804d7

SHA-1 – f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0

SHA-224 - 4149da18aa8bfc2b1e382c6c26556d01a92c261b6436dad5e3be3fcc

SHA-256 - 185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969

SHA-384 –

3519fe5ad2c596efe3e276a6f351b8fc0b03db861782490d45f7598ebd0ab5fd5520ed102f38c4a5ec834e9
8668035fc

SHA-512 –

33 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

3615f80c9d293ed7402687f94b22d58e529b8cc7916f8fac7fddf7fbd5af4cf777d3d795a7a00a16bf7e7f3fb
9561ee9baae480da9fe7a18769e71886b03f315

Previously in CMP202 Data Structures and Algorithms 2 in 2nd year Ethical Hacking, I implemented a
multi-threaded password cracker as my coursework. This worked by using one CPU (Central Processing
Unit) thread as a dictionary attack where a word list file was read from and each word was placed
through the specified hashing algorithm from the choice of MD5 or SHA256. The other threads use a
brute force method by attempting all possibilities for each number of characters up to the maximum
number of threads the CPU has. E.g. First thread tries all 1-character passwords, second thread tries
2-character passwords and so on.

During the development of this paper however, the algorithm has had multiple improvements and
changes made to it. First, more hashing options were added. The algorithm now includes the following
hashing algorithms: MD5, SHA224, SHA 256, SHA384, SHA512. The mathematical files to be able to hash
values were taken from (Code for Monkeys - C++, PHP, CSS, Programming Resource :: zedwood.com,
2020). This allows for a wider range of hashes to be cracked using this algorithm. The program has the
option to run using just one hashing algorithm to try and crack the inputted hash, or to run using all the
hashing algorithms at the same time to try and crack the inputted hash. This allows for a more functional
and modular program. The full source code for the password cracker can be seen in appendix C.

To demonstrate which hashing algorithm is more secure than the other, a selection of
phrases/passwords were chosen to be attempted to be cracked. These included: ‘password’, ‘qwerty’,
‘h4ck. These phrases were tested in the password cracker with MD5, SHA-224, SHA-256, SHA-384 and
SHA-512 hashes being tested. The inputted hashes can be seen below:

MD5:

password - 5f4dcc3b5aa765d61d8327deb882cf99

qwerty – d8578edf8458ce06fbc5bb76a58c5ca4

h4ck – 0ed5f1f056b1d96122afaae306d3dd65

SHA-224:

password – d63dc919e201d7bc4c825630d2cf25fdc93d4b2f0d46706d29038d01

qwerty – 5154aaa49392fb275ce7e12a7d3e00901cf9cf3ab10491673f97322f

h4ck – 906022a0f5bff263c5b9cfaa11a6c9270a456d2c7b30e6b50a0a25cc

SHA-256:

password - 5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8

qwerty – 65e84be33532fb784c48129675f9eff3a682b27168c0ea744b2cf58ee02337c5

h4ck – caf33ed88e8d64d24f58a675f8da6491cd91eec1c2cde5fbeb0773cec2d1fb63

34 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

SHA-384:

password –

a8b64babd0aca91a59bdbb7761b421d4f2bb38280d3a75ba0f21f2bebc45583d446c598660c94ce680c47
d19c30783a7

qwerty –

1ab60e110d41a9aac5e30d086c490819bfe3461b38c76b9602fe9686aa0aa3d28c63c96a1019e3788c40a1
4f4292e50f

h4ck -
ad6851ee3f95d51d3b818c8c34d1cc862fa5180c41a3876ad52ac11f76c7d9bb9efc751583555e6cf9d950e
11d7fad79

SHA-512:

password –

b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394c706a8bb980b1d7785e5976ec049b
46df5f1326af5a2ea6d103fd07c95385ffab0cacbc86

qwerty –

0dd3e512642c97ca3f747f9a76e374fbda73f9292823c0313be9d78add7cdd8f72235af0c553dd26797e78e
1854edee0ae002f8aba074b066dfce1af114e32f8

h4ck –

4d99f965b71a0de9bc8a0c5b9e153291e7aede241d8487662c7527429c8537842138280fb9f1262cc56d73
e6d27b20a4a5b39af1af5c807522bb3d56a7b7856e

Using the password cracker algorithm that had been implemented along with these hashes will give an
indication on the amount of time that requires to crack each hash through brute force and dictionary
attacks. The dictionary attack was carried out using a wordlist from online (danielmiessler/SecLists,
2020). This has 10,000 common passwords that can be hashed and compared to the input hash, this file
was saved and renamed to ‘Wordlist.txt’ in the same directory as the password cracker program.

To be able to carry out the comparison, the program must be used to crack each of these hashes using
individual hashing algorithms. Below are the steps taken to carry out one of these actions.

When first running the program, the program will ask if the user would like to attempt to crack a hash, or
to hash a string. Entering ‘2’ to crack a hash is used.

35 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 45: Function Selection

From here, the options that follow allow the user to either compare that entered hash to all possible
hash types this program supports or to compare against a certain type of hashing algorithm. Since in this
case it is to determine which singular hashing algorithm is better than the other, ‘2’ is entered.

Figure 46: Hash Function Selection

Displayed is a list of the hashing algorithms that can be tested listed from 2-6. In this case MD5 is being
used, entering ‘2’ allows for the use of testing against MD5 hashes.

Figure 47: Hash Selection

The next step is to input the hash that is wanting to be cracked, this can be seen below with the hash of
the phrase ‘password’ being entered.

Figure 48: Enter Hash

Next is to input the filename of a wordlist file for the dictionary attack. In this case the file that was
downloaded and being used is the ‘Wordlist.txt’ file. This can be seen entered in the screenshot below.

36 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 49: Enter Dictionary File

The next option is to display all attempted passwords. Selecting yes at this stage would dramatically
increase the time taken to crack any hashed phrase. So to give more accurate sense of which algorithm is
faster, no is selected. This is carried out by entering ‘0’ at this stage.

Figure 50: View Attempted Passwords

The program will then ask the user if they would like to specify the number of CPU threads to use. To
make it fair for all tests, the option to detect the maximum number of threads on the computer and use
them will be selected. This can be carried out by entering ‘2’ as seen below in figure 51.

Figure 51: Select Threads

Hitting enter after this prompt will start the password cracking. Seen below is the output format of the
program with the entered hash, the cracked password, the number of attempts it took to crack the
password, the number of milliseconds it took to crack, the hashing algorithm that was used and the type
of attack the password was found using.

Figure 52: Output

37 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

The full procedural output of the steps carried out above can be seen in figure 53 below.

Figure 53: Full Procedure

These steps are repeated 5 times for each of the hashes listed above for each hashing algorithm. The
results of the carried-out procedure can be seen below. These numbers are relative to the machine they
are running on as the CPU speed and core/thread count is an essential aspect to the program running.
The following results were carried out on an Intel Core i5 9600k, 6 Core 6 Thread CPU, overclocked to 4.8
GHz on all cores, with 32GB of 2666MHz DDR4 RAM. The results have been split into two separate
tables, one of which records the average time that is taken to crack each hash, and one with the average
number of attempts it takes to crack each hash.

38 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

MD5 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 8 9 10 9 8 8.8

qwerty 10 9 8 9 8 8.8
h4ck 13486 13514 13494 13596 13582 13534.4

SHA-224 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 9 10 10 8 8 9

qwerty 8 10 8 9 9 8.8
h4ck 25637 25728 25543 25677 25574 25631.8

SHA-256 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 8 8 10 10 10 9.2

qwerty 11 9 10 10 11 10.2
h4ck 28535 28738 28673 29715 29580 29048.2

SHA-384 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 8 9 9 10 11 9.4

qwerty 10 8 11 9 8 9.2
h4ck 43302 41663 41997 41515 41545 42004.4

SHA-512 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 11 12 11 9 9 10.4

qwerty 11 8 9 9 10 9.4
h4ck 54320 55396 52433 53170 56286 54321

Figure 54: Average Time Taken

39 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

MD5 Number 1
Number

2 Number 3
Number

4
Number

5 Average Attempts

password 330 266 643 449 491 435.8

qwerty 967 598 275 296 341 495.4

h4ck 6178847 6190666 6193037 6186701 6177655 6185381.2

SHA-224 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts

password 457 291 1018 704 152 524.4

qwerty 136 622 166 338 489 350.2

h4ck 6130058 6115808 6112918 6107792 6118382 6116991.6

SHA-256 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts

password 132 148 198 395 208 216.2

qwerty 416 216 459 515 503 421.8

h4ck 5681083 5762855 5769557 5932745 5967011 5822650.2

SHA-384 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts

password 149 132 150 168 536 227

qwerty 260 92 505 89 94 208

h4ck 5692543 5413609 5393001 5403932 5409344 5462485.8

SHA-512 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts

password 484 785 647 445 335 539.2

qwerty 481 180 351 229 413 330.8

h4ck 5424822 5436279 5375960 5446452 5451421 5426986.8
Figure 55: Average Attempts Taken

Taking the above results and plotting graphs from them shows the trend with each hashing algorithm.
Looking at figure 56 and 57, it can be seen that the number of attempts to be able to crack the password
drastically decreases with the complexity of the algorithm, with the number of attempted passwords for
MD5 being over 6 million in the space of 13 seconds and SHA-512 having 5.4million attempts in the
space of 54 seconds. This is due to the drastic increase in time that it takes for one hash to be calculated
for a more complex algorithm such as SHA-512, meaning that less attempts can be made in the same
length of time for an easier algorithm to run.

40 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Figure 56: Number of Attempts again Hashing Algorithm

Figure 57: Time Taken for Each Hashing Algorithm

As can be seen from the gathered results, the SHA family of hashes, from the ones tested above, require
a much longer time to be able to crack the same password used in all hashing algorithms. This means
that there is a much lower number of passwords being attempted per second. MD5 can be seen to have
many more attempts in a shorter time than SHA-256 and above algorithms. From the results, when
attempting to crack a MD5 hash, the program attempts around 450,000 hashes per second, whereas
SHA-256 attempts around 200,000 hashes and SHA-512 attempting around 100,000 per second. A lower

41 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

number of hashes attempted per second means that it would take a much longer time to be able to
crack any hash.

Along with the high number of hashes that can be tested per second, another reason as to why MD5
being considered insecure for use is that as it has been out for a long time, there are large dictionary
tables with cracked hashes in them showing the passwords in plain text. An example of an online
dictionary is MD5Online (https://www.md5online.org/), they have over 1,150 billion cracked passwords
using MD5 hashes, this means that 1,150 billion passwords have been cracked and are available to be
checked online at any time. MD5 is also known to have hash collisions, this is where different data, when
hashed, has the same hashed value as each other. In terms of a webserver and passwords in a database,
this might mean that a different password could be used instead of the actual password, as they turn out
to have the same hash value. This in turn indicates that the SHA family are a much more suitable hashing
algorithm for securing sensitive data. SHA-512 is the most secure hashing algorithm out of the collection
tested.

The implemented password cracker program allows for any inputted string to be hashed using one of the
listed algorithms in the program. This can allow the user to keep their information secure by hashing any
data that could be considered sensitive. The simple process of using the password cracker program to
hash the entered value of “Hacklab” and return the hash:
“b7ec19d91682d9114dbfd3c30ccb60ec69684d5dea7ddeedf2def444ac334b8f44fd970b31229d195bdd8
38611a9b608abf587c1d48798e32ae17c0be5c7be4e” can be seen below in figure 58.

Figure 58: Hashing a value

42 | Page

https://www.md5online.org/

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

3 DISCUSSION

3.1 GENERAL DISCUSSION

All sensitive data in the modern day must be secured to prevent from malicious attackers gaining access
to any sensitive information that may be transferred over a network or being stored on a computer and
or database. This can be carried out using the methods discussed in this paper, using RSA through HTTPS
or Kleopatra to transfer data and using hashing algorithms to store data securely. Without securing data
properly, information can be captured and cracked by attackers with a malicious intent. Be this over a
network or through a database, every aspect of the data transport life must be taken into consideration,
without this user’s information would be at risk.

Not hashing passwords with a suitable hashing algorithm can have a devastating effect. If a password
database was to use the MD5 hashing algorithm as standard, if exploited and leaked. The passwords
could easily be cracked in a very short time when compared to other algorithms. Using algorithms such
as Sha-256, SHA-384, SHA-512 should be the standard in the modern day. These algorithms take more
time to run which means that less attempts can be made per second at cracking the hash. These
algorithms also do not currently have the large databases of already cracked hashes available like MD5
does. This in turn allows for a much more secure method in storing passwords.

3.2 COUNTERMEASURES

When trusting a website for using SSL/TLS encryption, it is possible to gain a fake SSL certificate. This
means that it may appear that the network traffic is going to be sent encrypted and securely, this would
however not be the case as the webserver would not actually have the encryption activated, it would
just appear as it did. In conjunction with this, it is possible to have a fake ‘padlock’ at in the URL bar of a
website. Again, this appears to be genuine but can trick the user into thinking that their traffic will be
secure when being transmitted.

One of the possible countermeasures to the hashing algorithms discussed above has already been
presented and tested in section 2.5 above. Password crackers can be used to brute force and/or
dictionary attack any found hashes. Depending on the hardware used to run the password crackers,
hundreds of thousands of passwords can be attempted per second to try and crack these passwords.

3.3 CONCLUSIONS

In conclusion to this paper, all sensitive data being sent or stored should be handled correctly and either
be encrypted, hashed or obscured in a way that makes it very difficult for the attacker as can be seen
using HTTP in the modern day to send data between points is not a secure way of transmitting data.
HTTPS should always be used over HTTP when necessary. If unable to use HTTPS, then another
encryption method such as Kleopatra should be used as a secure method in transferring data. Both of
these methods use RSA encryption and are considered a secure way of transmitting data.

43 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

In conclusion to the gathered results from the password cracker, it can be seen that SHA-512 is the most
secure hashing algorithm tested above, however it may be more suitable for smaller businesses that may
not have the required computing power to use SHA-256 instead of SHA-512 as it takes longer to hash.
SHA-256 is still considered a secure hashing algorithm but with more secure options available,
consideration into what is being stored must be taken. MD5 should not be used to store any sensitive
information as it is no longer considered secure due to the many vulnerabilities found in the algorithm.

3.4 FUTURE WORK

If more time was available, more research would be put into the mathematics and equations behind the
different hashing algorithms such as MD5 and the SHA family of algorithms. This would allow for a
further insight into the differences in mathematics between the algorithms and why one would be
considered more complex and secure that the other.

More research could be carried out to find other methods of sending data securely over a network. This
could include other types of encryption methods such as AES (Advanced Encryption Standard) or
TripleDES (Triple Data Encryption Standard). Demonstrations of these methods along with explanations
of the mathematics behind these methods could be researched and demonstrated to allow for a fuller
understanding and comparison between each method.

Methods in which to try and break these types of encryption methods could be researched into and
possibly demonstrated to indicate how strong each method is for securing data. Tools could possibly be
developed like the password cracker used in this paper.

44 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

REFERENCES

For URLs, Blogs:

Store.hp.com. (2020). What Are the Different Types of Encryption? | HP® Tech Takes. [online] Available at:
https://store.hp.com/us/en/tech-takes/what-are-different-types-of-encryption [Accessed 2 Mar. 2020].

Anon, (2020). [online] Available at: https://www.cloudflare.com/learning/ssl/what-is-https/ [Accessed 2 Mar.
2020].

Md5online.org. 2020. 3 Reasons Why MD5 Is Not Secure | Md5online. [online] Available at:
https://www.md5online.org/blog/why-md5-is-not-safe/ [Accessed 31 March 2020].

En.wikipedia.org. 2020. MD5. [online] Available at: https://en.wikipedia.org/wiki/MD5 [Accessed 31 March 2020].

En.wikipedia.org. 2020. SHA-2. [online] Available at: https://en.wikipedia.org/wiki/SHA-2 [Accessed 31 March
2020].

KeyCDN. 2020. What Is The Difference Between HTTP And HTTPS? - Keycdn. [online] Available at:
https://www.keycdn.com/blog/difference-between-http-and-https [Accessed 31 March 2020].

Hashed Out by The SSL Store™. 2020. What Is The Difference Between SHA-1, SHA-2 And SHA-256?. [online]
Available at: https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/ [Accessed 31
March 2020].

Medium. 2020. Why An Unsalted MD5 Hash Is Bad Practice. [online] Available at:
https://medium.com/@svanas/why-an-unsalted-md5-hash-is-bad-practice-6a0d7d017856 [Accessed 31 March
2020].

Vocell, J., 2020. A Beginner's Guide To SSL: What It Is & Why It Makes Your Website More Secure. [online]
Blog.hubspot.com. Available at: https://blog.hubspot.com/marketing/what-is-ssl [Accessed 1 April 2020].

Streetdirectory.com. 2020. What Is The Strongest Hash Algorithm?. [online] Available at:
https://www.streetdirectory.com/etoday/what-is-the-strongest-hash-algorithm-ejcluw.html [Accessed 27 April
2020].

2020. [online] Available at: https://www.cloudflare.com/learning/ssl/what-is-https/ [Accessed 27 April 2020].

Robert Heaton. 2020. How Does HTTPS Actually Work? | Robert Heaton. [online] Available at:
https://robertheaton.com/2014/03/27/how-does-https-actually-work/ [Accessed 27 April 2020].

SearchSecurity. 2020. Secure Data Transmission Methods. [online] Available at:
https://searchsecurity.techtarget.com/tip/Secure-data-transmission-methods [Accessed 27 April 2020].

Schneider Electric Blog. 2020. Transporting Data Securely - Schneider Electric Blog. [online] Available at:
https://blog.se.com/industrial-software/2015/04/21/transporting-data-securely/ [Accessed 27 April 2020].

Md5online.org. 2020. 3 Reasons Why MD5 Is Not Secure – Md5online. [online] Available at:
https://www.md5online.org/blog/why-md5-is-not-safe/ [Accessed 28 April 2020].

Namecheap.com. 2020. What Is An RSA Key Used For? - SSL Certificates - Namecheap.Com. [online] Available at:
https://www.namecheap.com/support/knowledgebase/article.aspx/798/67/what-is-an-rsa-key-used-for [Accessed
28 April 2020].

45 | Page

https://store.hp.com/us/en/tech-takes/what-are-different-types-of-encryption
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.md5online.org/blog/why-md5-is-not-safe/
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-2
https://www.keycdn.com/blog/difference-between-http-and-https
https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/
https://medium.com/@svanas/why-an-unsalted-md5-hash-is-bad-practice-6a0d7d017856
https://blog.hubspot.com/marketing/what-is-ssl
https://www.streetdirectory.com/etoday/what-is-the-strongest-hash-algorithm-ejcluw.html
https://www.cloudflare.com/learning/ssl/what-is-https/
https://robertheaton.com/2014/03/27/how-does-https-actually-work/
https://searchsecurity.techtarget.com/tip/Secure-data-transmission-methods
https://blog.se.com/industrial-software/2015/04/21/transporting-data-securely/
https://www.md5online.org/blog/why-md5-is-not-safe/
https://www.namecheap.com/support/knowledgebase/article.aspx/798/67/what-is-an-rsa-key-used-for

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Digicert.com. 2020. All About SSL Cryptography | Digicert.Com. [online] Available at:
https://www.digicert.com/ssl-cryptography.htm [Accessed 28 April 2020].

Difference between SHA 512, S., Mohan, V. and Ossifrage, S., 2020. Difference Between SHA 512, SHA 512 Half, SHA
256. [online] Cryptography Stack Exchange. Available at:
https://crypto.stackexchange.com/questions/55658/difference-between-sha-512-sha-512-half-sha-256 [Accessed
29 April 2020].

integrity, S., S., D., Climent, M. and Rock, G., 2020. SHA-256 Or MD5 For File Integrity. [online] Stack Overflow.
Available at: https://stackoverflow.com/questions/14139727/sha-256-or-md5-for-file-integrity [Accessed 29 April
2020].

Maria, G., 2020. 4 Common Encryption Methods And Use Cases. [online] GetApp Lab. Available at:
https://lab.getapp.com/common-encryption-methods/ [Accessed 29 April 2020].

2020. [online] Available at: https://www.cloudflare.com/learning/ssl/why-is-http-not-secure/ [Accessed 1
May 2020].

SelfKey. 2020. All Data Breaches In 2019 & 2020 - An Alarming Timeline - Selfkey. [online] Available at:
https://selfkey.org/data-breaches-in-2019/ [Accessed 1 May 2020].

Greenberg, A., 2020. Hackers Are Passing Around A Megaleak Of 2.2 Billion Records. [online] Wired.
Available at: https://www.wired.com/story/collection-leak-usernames-passwords-billions/ [Accessed 1 May
2020].

Mathematical files for Password Cracker: Zedwood.com. 2020. Code For Monkeys - C++, PHP, CSS,
Programming Resource :: Zedwood.Com. [online] Available at: http://www.zedwood.com/ [Accessed 30
April 2020].

Dictionary file: GitHub. 2020. Danielmiessler/Seclists. [online] Available at:
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-passw
ord-list-top-10000.txt [Accessed 30 April 2020].

46 | Page

https://www.digicert.com/ssl-cryptography.htm
https://crypto.stackexchange.com/questions/55658/difference-between-sha-512-sha-512-half-sha-256
https://stackoverflow.com/questions/14139727/sha-256-or-md5-for-file-integrity
https://lab.getapp.com/common-encryption-methods/
https://www.cloudflare.com/learning/ssl/why-is-http-not-secure/
https://selfkey.org/data-breaches-in-2019/
https://www.wired.com/story/collection-leak-usernames-passwords-billions/
http://www.zedwood.com/
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-10000.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-10000.txt

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

APPENDICES

APPENDIX A – OPENPGP CERTIFICATE

This is a revocation certificate for the OpenPGP key:

pub rsa2048 2020-03-31 [S]

11221E6CD14332A558C0331490B6F1F5066EFBA3

uid Johhny (Test Account) <johncreee@gmail.com>

A revocation certificate is a kind of "kill switch" to publicly

declare that a key shall not anymore be used. It is not possible

to retract such a revocation certificate once it has been published.

Use it to revoke this key in case of a compromise or loss of

the secret key. However, if the secret key is still accessible,

it is better to generate a new revocation certificate and give

a reason for the revocation. For details see the description of

of the gpg command "--generate-revocation" in the GnuPG manual.

To avoid an accidental use of this file, a colon has been inserted

before the 5 dashes below. Remove this colon with a text editor

before importing and publishing this revocation certificate.

:-----BEGIN PGP PUBLIC KEY BLOCK-----

Comment: This is a revocation certificate

iQE2BCABCAAgFiEEESIebNFDMqVYwDMUkLbx9QZu+6MFAl6DdasCHQAACgkQkLbx

47 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

9QZu+6PHzwf/VmS34ctOwp1JcABpyKdWE3P0TmwJURGqsw1ttYzT6bwtbBrlWcj1

qm6fLKrHrZTDe826kCHKrjRWwgPwqssZDBktyEP50vHiBsqBjlVhMA2/uXW2qvom

RryiBXGgaCihPTm5SKflxY6QEb/hgX3o65mKGG29sGlLswPjgmNcnLVnRnrjkVAm

Hz+9YJf5KrjNmZEJnLHqv8mlT5O6q24KpvHBpk/pX6FAuxpU43K3nqNi+NQD4H4H

x22tYQhWJRls7CUjNa5/XopTkm4MLh4++9t1iKVE2aPX9wXAI7A5rEh+PqT08DKl

J4rWuIRebebGLdL8u38WlXHh2820d0LzNA==

=jMNU

-----END PGP PUBLIC KEY BLOCK-----

APPENDIX B – PUBLIC KEY

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBF6DdYgBCAC0n7AC719PcazllMfLZi4U0ThJcO7kc/FpHkvPsM/Faoab7CIS

Xuv66DZGGN/Axyk92CYrlBBqwHQHS0aPSMSqJi2CwEke/C3ne2YybPGe3p7s4Fjp

AI2wDCtEtr6PoztmA8P9BTuzw/4mV15XQRkSbWaJZX84o3a0n2NXXqTLxudr5sSa

AealgXd0lcxXDINX+Rs0l4udfWYJpmDn8E3J5NVfeqPu4sqL0qWNWBQLCxolsh/L

8S02xKXyhdmzBlv8DJ4rAY7O5vHSHHT0LuZCFeNnA6bc+CriRTWS0MmaxWG6KRcq

xaLrKoa30ZHkeQZzEOg2+gCNV6/5Ui5m9PqHABEBAAG0K0pvaGhueSAoVGVzdCBB

Y2NvdW50KSA8am9obmNyZWVlQGdtYWlsLmNvbT6JAU4EEwEIADgWIQQRIh5s0UMy

pVjAMxSQtvH1Bm77owUCXoN1iAIbAwULCQgHAgYVCgkICwIEFgIDAQIeAQIXgAAK

CRCQtvH1Bm77o3bmCACenGKUng6jUIBezjSJC7ZEEyUxiFKeDKxsgLLSpQAK3wVi

U0P19R1hhY2jDs79hFRNvZYTk2+scZtk3s9VawIMC69kuf5ZFtVRuoEMz9t+cOsk

+QsSP3GWfeQ95qPqjNX124y1A0IyNh923bzgFvfQhRB19py6YOGz0648k+Gig/W1

PKJM5pcHY7ehOoglN+zDUraHYNGI+kvA1X+UeaC3TRqevwGtSFmo6eWJkvuKobzJ

96DmL+8983YTAdXgLU6gSs3L9IakIJcOiHAC7il7721kEIR937LljQz8F/ulRkBx

4a/uY4QWBE4eju1HXdNoPtG3AE/BOTiMy8+hFBIWuQENBF6DdYgBCAC7Eur2vbmG

WyuaoYN5DsukGxllXM6Ij75ItN1b5QUbHuJa7+8SMtr9fHNvyNEgxkv/a76R+ucq

zLRJZcL4SGbEnnhmNei+fgb8RTLNkpyysNtD9iejQAEzU7Dn1/fjnX4rJ3P0iZr/

48 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

MBj/42KxIX20Awgwa30jeBYDOaQSo2ixVZTT513SdJLImmVIh6J1PUJgJ9JQzF3o

0TKHAYRogUOPH6j/ra+zcjcHGGxvkDO3XMmBJuqqhK4FTbMO3I0gWLKHdDx+ivqv

6mDh0fBUxqoEhy4Dkt+pDWnOHGkDoRamAb1OWf0qPqN5U9pdpTTdibIUoNFvj0ks

Cv8pARuwSaQXABEBAAGJATYEGAEIACAWIQQRIh5s0UMypVjAMxSQtvH1Bm77owUC

XoN1iAIbDAAKCRCQtvH1Bm77o3sICACgaaDTcTE1eE2M6a3xn1F+vCCUZEZgDETo

LFeI/rm+Zhgp4mRFr7Y0p1Y6B+l9o6wNzDFUoZOx/avxojEyA7qbkCKE/6p6hQ2B

ObEFLsc0tWOoAb5k2iA5TgztMs4VCDihFtX+PQw3fAraIDZL988kp/y3w9pEnG75

KDwCHH4FeLiYdhnokFYFB7EkFC4mWZlzLW6s2QKmiXSeN9I9f1AJSXCfz2ZUqTbs

MnRtDb1+GN4V2ShbvPEbVSFZkE14vC7BVXqMzEZSqXwLUUss+nKPFxDCBlKd3Qiy

3x6CpABCYTbshRNqPHxH48d0rhEDkxgLzS7mE/RroY+kGjbg+m+/

=zuC4

-----END PGP PUBLIC KEY BLOCK-----

49 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

APPENDIX C – MULTI-THREADED PASSWORD CRACKER

Source.cpp

// Multi-Threaded password cracker implemented by Jonah McElfatrick
// Uses a mixture of dictionary attack and brute force methods to attempt to crack the inputted hash
// The hash algorithms compatible with this algorithm are MD5, SHA224, SHA256, SHA384 and
SHA512
#include <iostream>
#include <string>
#include <fstream>
#include <thread>
#include <mutex>
#include <vector>
#include "md5.h" // NOT MY OWN WORK, THIS FILE WAS TAKEN FROM
http://www.zedwood.com/article/cpp-md5-function
#include "sha224.h" // NOT MY OWN WORK, THIS FILE WAS TAKEN FROM
http://www.zedwood.com/article/cpp-sha224-function
#include "sha256.h" // NOT MY OWN WORK, THIS FILE WAS TAKEN FROM
http://www.zedwood.com/article/cpp-sha256-function
#include "sha384.h" // NOT MY OWN WORK, THIS FILE WAS TAKEN FROM
http://www.zedwood.com/article/cpp-sha384-function
#include "sha512.h" // NOT MY OWN WORK, THIS FILE WAS TAKEN FROM
http://www.zedwood.com/article/cpp-sha512-function

using namespace std;

// Import clock
using std::chrono::duration_cast;
using std::chrono::milliseconds;

// Define the alias "the_clock" for the clock type we're going to use.
typedef std::chrono::steady_clock the_clock;

// Mutex for when calculating the hash
mutex hash_mutex;

// Mutex for when displaying the current attempted password
mutex cout_mutex;

// Counter condition variable to count the number of attempts been carried out
condition_variable counter_cv;
mutex counter_mutex;
bool counter_bool;

// Bool to identify if the password has been found or not
bool done = false;

50 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

// String for the found password
string FoundPassword;

// Counter
int counter = 0;

// Method of found
string method;

// Used method
string hashMethod;

// Uppercase letters array
const char CapitaLetters[26] =
{

'A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U',
'V', 'W', 'X', 'Y', 'Z'

};

// Lowercase letters array
const char LowerCaseLetters[26] =
{

'a', 'b', 'c', 'd', 'e', 'f', 'g',
'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u',
'v', 'w', 'x', 'y', 'z'

};

// Symbols array
const char Symbols[22] =
{

'!','£','$','%','^','&','*','(',')'
,'@','~','#','|','?','¬','`','{',
'}','[',']',';',':'

};

// Numbers array
const char Numbers[10] =
{

'1','2','3','4','5','6','7','8','9','0'
};

// Takes each line in the word file, hashes it then compares it to the entered hash to see if they match

51 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

// If they match then the password has been found, else it continues on till the end of the file
void DictionaryAttack(string filename, string inputHash, int hashChoice, int display) {

// Variable for the contents of the file
string contents;

// Opens the text file for reading
ifstream file(filename, ios_base::binary);

// Check to see if the file was successfully opened
if (!file.good()) {

cout << "Unable to open Text File";
system("pause");

}
else {

// Takes each line in the text file and hashes the contents, then compares it to the
entered hash

while (file >> contents && !done) {
// Notify the counter condition variable to allow the addition of another

attempt to the counter variable
counter_bool = true;
counter_cv.notify_one();

// Check to see if the user wants to print out current password being
attempted

// Mutex's used to allow for a clean output on which password is being
attempted

if (display == 1) {
cout_mutex.lock();
cout << contents << endl;
cout_mutex.unlock();

}

// Initialise hash variable to store the hashed attempted password
string hash = "";

if (hashChoice == 1 || hashChoice == 2) {
// Hash the password using MD5
hash_mutex.lock();
hash = md5(contents);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to
the inputted hash in MD5

if (hash == inputHash) {
hashMethod = "MD5";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();

52 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

done = true;
FoundPassword = contents;
method = "Dictionary";
cout_mutex.unlock();

}
}

if (hashChoice == 1 || hashChoice == 3) {
// Hash the password using sha224
hash_mutex.lock();
hash = sha224(contents);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to
the inputted hash in SHA224

if (hash == inputHash) {
hashMethod = "SHA-224";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = contents;
method = "Dictionary";
cout_mutex.unlock();

}
}

if (hashChoice == 1 || hashChoice == 4) {
// Hash the password using sha256
hash_mutex.lock();
hash = sha256(contents);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to
the inputted hash in SHA256

if (hash == inputHash) {
hashMethod = "SHA-256";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = contents;
method = "Dictionary";
cout_mutex.unlock();

}
}

if (hashChoice == 1 || hashChoice == 5) {
// Hash the password using sha384

53 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

hash_mutex.lock();
hash = sha384(contents);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to
the inputted hash in SHA384

if (hash == inputHash) {
hashMethod = "SHA-384";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = contents;
method = "Dictionary";
cout_mutex.unlock();

}
}

if (hashChoice == 1 || hashChoice == 6) {
// Hash the password using sha512
hash_mutex.lock();
hash = sha512(contents);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to
the inputted hash in SHA512

if (hash == inputHash) {
hashMethod = "SHA-512";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = contents;
method = "Dictionary";
cout_mutex.unlock();

}
}

}
}
// Closes the input textfile
file.close();
return;

}

// Tries every iteration or possibility from lowercase letters, uppercase letters, numbers and symbols.
Hashes these itterations and then compares them to the entered hash value
// If the calculated hash is equal to the entered hash then the password has been found, else it
continues on till the end of the possible itterations
// For each thread running this function they are calculating it for different lengths, for example thread

54 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

one will calculate for a password string length of 1
// thread two will calculate for a password string length of 2, thread three will calculate for a password
string length of 3 and so on.
void BruteForce(int stringlength, string s, string inputHash, int hashChoice, int display) {

// Check to see if the password has been found, if so will start the return process on all
iterations of the function

if (done) return;

string pwordattempt;

// Checks to see if the attempted password length for the thread has been reached to then
check if the attempted password is equal to the actual password

if (stringlength == 0)
{

// Notify the counter condition variable to allow the addition of another attempt to
the counter variable

counter_bool = true;
counter_cv.notify_one();

// Check to see if the user wants to print out current password being attempted
// Mutex's used to allow for a clean output on which password is being attempted
if (display == 1) {

cout_mutex.lock();
cout << s << endl;
cout_mutex.unlock();

}

// Initialise hash variable to store the hashed attempted password
string hash = "";

if (hashChoice == 1 || hashChoice == 2) {
// Hash the password using MD5
hash_mutex.lock();
hash = md5(s);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to the
inputted hash in MD5

if (hash == inputHash) {
hashMethod = "MD5";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = s;
method = "Brute Force";
cout_mutex.unlock();

}

55 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

}

if (hashChoice == 1 || hashChoice == 3) {
// Hash the password using sha224
hash_mutex.lock();
hash = sha224(s);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to the
inputted hash in SHA224

if (hash == inputHash) {
hashMethod = "SHA-224";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = s;
method = "Brute Force";
cout_mutex.unlock();

}
}

if (hashChoice == 1 || hashChoice == 4) {
// Hash the password using sha256
hash_mutex.lock();
hash = sha256(s);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to the
inputted hash in SHA256

if (hash == inputHash) {
hashMethod = "SHA-256";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = s;
method = "Brute Force";
cout_mutex.unlock();

}
}

if (hashChoice == 1 || hashChoice == 5) {
// Hash the password using sha384
hash_mutex.lock();
hash = sha384(s);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to the

56 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

inputted hash in SHA384
if (hash == inputHash) {

hashMethod = "SHA-384";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = s;
method = "Brute Force";
cout_mutex.unlock();

}
}

if (hashChoice == 1 || hashChoice == 6) {
// Hash the password using sha512
hash_mutex.lock();
hash = sha512(s);
hash_mutex.unlock();

// Checks to see if the current hashed attempted password is equal to the
inputted hash in SHA512

if (hash == inputHash) {
hashMethod = "SHA-512";
cout << endl << "Hash: " << hash << endl;
cout_mutex.lock();
done = true;
FoundPassword = s;
method = "Brute Force";
cout_mutex.unlock();

}
}
return;

}

for (int i = 0; i < 26 && !done; i++) // iterate through alphabet
{

// Append new character onto the string
// Recursively call function again untill string has reached its length
// Loop for lowercase letters
pwordattempt = s + LowerCaseLetters[i];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

}

// Loop for capital letters
for (int j = 0; j < 26 && !done; j++) {

pwordattempt = s + CapitaLetters[j];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

}

57 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

// Loop for symbols
for (int x = 0; x < 22 && !done; x++) {

pwordattempt = s + Symbols[x];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

}

// Loop for numbers
for (int y = 0; y < 10 && !done; y++) {

pwordattempt = s + Numbers[y];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

}
}

// Simple function to check if an integer is within a certain range
int validateInt(int min, int max, int choice) {

while (choice < min || choice > max) {
cout << "Invalid Input" << endl;
cout << "Please enter a value from the range above: " << endl << ">> ";
cin >> choice;
cout << endl;

}
return choice;

}

// Receive the choice of which hashing algorithm the password was hashed with
int ReceiveChoiceInput() {

int choice;
cout << "Would you like to attempt to crack:" << endl << "1: All Hashes supported" << endl <<

"2: Certain Hash" << endl << ">> ";
cin >> choice;
cout << endl;
validateInt(1, 2, choice);
if (choice == 2) {

cout << "Please enter the type of hash you are wanting to crack" << endl << "2: MD5"
<< endl << "3: SHA-224" << endl << "4: SHA-256" << endl << "5: SHA-384" << endl << "6: SHA-512" <<
endl << ">> ";

cin >> choice;
cout << endl;
validateInt(2, 6, choice);

}
return choice;

}

// Receive the hash that is trying to be cracked
string ReceiveHashInput() {

string hash;

58 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

cout << "Please enter the hash you would like to crack: " << endl << ">> ";
cin >> hash;
cout << endl;
return hash;

}

// Receive the filename for the wordlist used in the dictionary attack
string ReceiveFilename() {

string filename;
cout << "Please enter the filename with the correct extension for the dictionary attack: " <<

endl << ">> ";
cin >> filename;
cout << endl;
return filename;

}

// Function for receiving the number of threads that will run depending on how many characters the
user wants to try and crack the password for
int ReceiveThreads() {

int threadNumber;
int choice;
// Gives the user the choice to use the maximum number of threads available by the

computer's CPU
// Or to use a specified number of threads
cout << "Please select from the following: " << endl << "1: Specify number of threads" << endl

<< "2: Detect Maximum threads" << endl << ">> ";
cin >> choice;
cout << endl;
// Validate choice is one from the list above
validateInt(1, 2, choice);

if (choice == 1) {
cout << "Please enter the number of characters you would like to try to crack: " <<

endl << ">> ";
cin >> threadNumber;
cout << endl;

// Validate the input is no more than 6 characters long
validateInt(1, 10, threadNumber);

// Returning threadNumber + 2 as there is 2 threads needed extra, one for the
dictionary

// attack and one to run the counter function to count the number of times a attempt
has been made to crack the password

threadNumber += 2;
}
else {

59 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

threadNumber = thread::hardware_concurrency();
}

return threadNumber;
}

// Function to receive the choice to display the current attempted password
int receiveDisplayChoice() {

int choice;
cout << "Would you like to view all attempted password? (1 for Yes or 0 for No)" << endl <<

"Please note this will increase the time taken to crack the password drastically" << endl << ">> ";
cin >> choice;
cout << endl;
choice = validateInt(0, 1, choice);
return choice;

}

int ReceiveMethodChoice() {
int choice;
cout << "Would you like to:" << endl << "1: Hash an input? " << endl << "2: Attempt to crack a

hash? " << endl << ">> ";
cin >> choice;
cout << endl;
choice = validateInt(1, 2, choice);
return choice;

}

// Function to record the number of attempts that have been made to crack the entered hash
void numberCounter() {

while (!done)
{

unique_lock<mutex> mylock(counter_mutex);
while (!done && counter_bool == false) {

counter_cv.wait(mylock);
}
if (done)

return;
counter += 1;
counter_bool = false;

}
return;

}

// Function to hash the users input and return the hashed value to the screen
void hashFunction() {

// Initialise variables for selecting the hash choice, the string to be hashed and the calculated
hash

60 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

int hashChoice;
string stringToHash;
string hash;

cout << "What hash would you like to use" << endl << "1: MD5" << endl << "2: SHA-224" <<
endl << "3: SHA-256" << endl << "4: SHA-384" << endl << "5: SHA-512" << endl << ">> ";

cin >> hashChoice;
cout << endl;
hashChoice = validateInt(1, 5, hashChoice);
cout << "Please enter the string you would like to hash" << endl << ">> ";
cin >> stringToHash;
cout << endl;

switch (hashChoice)
{
case 1: hash = md5(stringToHash); break;
case 2: hash = sha224(stringToHash); break;
case 3: hash = sha256(stringToHash); break;
case 4: hash = sha384(stringToHash); break;
case 5: hash = sha512(stringToHash); break;
default:

break;
}

cout << "String: " << stringToHash << endl << "Produced Hash: " << hash << endl;
return;

}

int main()
{

//Initialise variable for storing the filename of the wordlist being used
string filename;

// Choice of which hash is being used
int hashChoice = 0;

// The inputted hash that is the target goal to crack
string inputHash = "";

// Number of attemtps to crack the password
int attempts;

// Length of the string being attempted as the password
int stringlength = 1;

// Number of threads that are being initiated

61 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

int threadNumber;

// Choice to display attempted passwords or not
int display;

// Choice of hash or crack
int methodChoice;

// Receive the choice to hash an input or crack a hash
methodChoice = ReceiveMethodChoice();

// Check to see what method has been chosen
if (methodChoice == 1) {

hashFunction();
}
else {

// Receive the which hashing algorithm is being used
hashChoice = ReceiveChoiceInput();

// Receive the hash that is being broken
inputHash = ReceiveHashInput();

// Receive the name of the text file that is being used in the dictionary attack
filename = ReceiveFilename();

// Receive the choice to display the attempted passwords or not
display = receiveDisplayChoice();

// Receive the number of threads to be initiated
threadNumber = ReceiveThreads();

cout << "Initialising password crack...";

// Start the clock
the_clock::time_point start = the_clock::now();

// Initialise vector of threads
vector<thread> tvector = {};

// Initialise the thread to run the counter loop to count the number of attempts to
crack the password

tvector.push_back(thread(numberCounter));

// Initialising threads each cracking the password for a different length
while (stringlength < (threadNumber - 1)) {

tvector.push_back(thread(BruteForce, stringlength, "", inputHash,
hashChoice, display));

62 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

stringlength++;
}

//Initialise thread for Dictionary attack
tvector.push_back(thread(DictionaryAttack, filename, inputHash, hashChoice,

display));

// Join all working threads
for (int i = 1; i < threadNumber; i++) {

tvector[i].join();
}

// Display the cracked password if found and the number of tries to crack it
if (done) {

cout << "Cracked Password: " << FoundPassword << endl;
cout << "Number of attempts to crack the password: " << counter << endl;

}
//Display password not found
else {

cout << "Password not found" << endl;
}
the_clock::time_point end = the_clock::now();
// End the clock

// Compute and display the difference between the start and end times in
milliseconds

auto time_taken = duration_cast<milliseconds>(end - start).count();
cout << "Cracking the password took " << time_taken << " ms. " << "It was using the "

<< hashMethod << " hash method. " << "It was found using the " << method << " attack." << endl;

// Notify and join the thread that is running the counter loop to count the number of
password attempts

counter_cv.notify_one();
(tvector.front()).join();

}

system("pause");
return 0;

}

Md5.h

63 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

/* MD5
converted to C++ class by Frank Thilo (thilo@unix-ag.org)
for bzflag (http://www.bzflag.org)

 based on:

 md5.h and md5.c
 reference implementation of RFC 1321

 Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

*/

#ifndef BZF_MD5_H
#define BZF_MD5_H
#define _CRT_SECURE_NO_WARNINGS
#include <cstring>
#include <iostream>

// a small class for calculating MD5 hashes of strings or byte arrays
// it is not meant to be fast or secure
//
// usage: 1) feed it blocks of uchars with update()
// 2) finalize()
// 3) get hexdigest() string
// or
// MD5(std::string).hexdigest()

64 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

//
// assumes that char is 8 bit and int is 32 bit
class MD5
{
public:

typedef unsigned int size_type; // must be 32bit

MD5();
MD5(const std::string& text);
void update(const unsigned char *buf, size_type length);
void update(const char *buf, size_type length);
MD5& finalize();
std::string hexdigest() const;
friend std::ostream& operator<<(std::ostream&, MD5 md5);

private:
void init();
typedef unsigned char uint1; // 8bit
typedef unsigned int uint4; // 32bit
enum { blocksize = 64 }; // VC6 won't eat a const static int here

void transform(const uint1 block[blocksize]);
static void decode(uint4 output[], const uint1 input[], size_type len);
static void encode(uint1 output[], const uint4 input[], size_type len);

bool finalized;
uint1 buffer[blocksize]; // bytes that didn't fit in last 64 byte chunk
uint4 count[2]; // 64bit counter for number of bits (lo, hi)
uint4 state[4]; // digest so far
uint1 digest[16]; // the result

// low level logic operations
static inline uint4 F(uint4 x, uint4 y, uint4 z);
static inline uint4 G(uint4 x, uint4 y, uint4 z);
static inline uint4 H(uint4 x, uint4 y, uint4 z);
static inline uint4 I(uint4 x, uint4 y, uint4 z);
static inline uint4 rotate_left(uint4 x, int n);
static inline void FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
static inline void GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
static inline void HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
static inline void II(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);

};

std::string md5(const std::string str);

#endif

65 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Sha224.h

#ifndef SHA224_H
#define SHA224_H
#include <string>

class SHA224
{
protected:

typedef unsigned char uint8;
typedef unsigned int uint32;
typedef unsigned long long uint64;

const static uint32 sha256_k[];
static const unsigned int SHA224_256_BLOCK_SIZE = (512 / 8);

public:
void init();
void update(const unsigned char *message, unsigned int len);
void final(unsigned char *digest);
static const unsigned int DIGEST_SIZE = (224 / 8);

protected:
void transform(const unsigned char *message, unsigned int block_nb);
unsigned int m_tot_len;
unsigned int m_len;
unsigned char m_block[2 * SHA224_256_BLOCK_SIZE];
uint32 m_h[8];

};

std::string sha224(std::string input);

#define SHA2_SHFR(x, n) (x >> n)
#define SHA2_ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define SHA2_ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define SHA2_CH(x, y, z) ((x & y) ^ (~x & z))
#define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA256_F1(x) (SHA2_ROTR(x, 2) ^ SHA2_ROTR(x, 13) ^ SHA2_ROTR(x, 22))
#define SHA256_F2(x) (SHA2_ROTR(x, 6) ^ SHA2_ROTR(x, 11) ^ SHA2_ROTR(x, 25))
#define SHA256_F3(x) (SHA2_ROTR(x, 7) ^ SHA2_ROTR(x, 18) ^ SHA2_SHFR(x, 3))
#define SHA256_F4(x) (SHA2_ROTR(x, 17) ^ SHA2_ROTR(x, 19) ^ SHA2_SHFR(x, 10))
#define SHA2_UNPACK32(x, str) \

66 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

{ \
 *((str) + 3) = (uint8) ((x)); \
 *((str) + 2) = (uint8) ((x) >> 8); \
 *((str) + 1) = (uint8) ((x) >> 16); \
 *((str) + 0) = (uint8) ((x) >> 24); \
}
#define SHA2_PACK32(str, x) \
{ \
 *(x) = ((uint32) *((str) + 3)) \
 | ((uint32) *((str) + 2) << 8) \
 | ((uint32) *((str) + 1) << 16) \
 | ((uint32) *((str) + 0) << 24); \
}

#endif

Sha256.h

#ifndef SHA256_H
#define SHA256_H
#define _CRT_SECURE_NO_WARNINGS
#include <string>

class SHA256
{
protected:

typedef unsigned char uint8;
typedef unsigned int uint32;
typedef unsigned long long uint64;

const static uint32 sha256_k[];
static const unsigned int SHA224_256_BLOCK_SIZE = (512 / 8);

public:
void init();
void update(const unsigned char *message, unsigned int len);
void final(unsigned char *digest);
static const unsigned int DIGEST_SIZE = (256 / 8);

protected:
void transform(const unsigned char *message, unsigned int block_nb);
unsigned int m_tot_len;

67 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

unsigned int m_len;
unsigned char m_block[2 * SHA224_256_BLOCK_SIZE];
uint32 m_h[8];

};

std::string sha256(std::string input);

#define SHA2_SHFR(x, n) (x >> n)
#define SHA2_ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define SHA2_ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define SHA2_CH(x, y, z) ((x & y) ^ (~x & z))
#define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA256_F1(x) (SHA2_ROTR(x, 2) ^ SHA2_ROTR(x, 13) ^ SHA2_ROTR(x, 22))
#define SHA256_F2(x) (SHA2_ROTR(x, 6) ^ SHA2_ROTR(x, 11) ^ SHA2_ROTR(x, 25))
#define SHA256_F3(x) (SHA2_ROTR(x, 7) ^ SHA2_ROTR(x, 18) ^ SHA2_SHFR(x, 3))
#define SHA256_F4(x) (SHA2_ROTR(x, 17) ^ SHA2_ROTR(x, 19) ^ SHA2_SHFR(x, 10))
#define SHA2_UNPACK32(x, str) \
{ \
 *((str) + 3) = (uint8) ((x)); \
 *((str) + 2) = (uint8) ((x) >> 8); \
 *((str) + 1) = (uint8) ((x) >> 16); \
 *((str) + 0) = (uint8) ((x) >> 24); \
}
#define SHA2_PACK32(str, x) \
{ \
 *(x) = ((uint32) *((str) + 3)) \
 | ((uint32) *((str) + 2) << 8) \
 | ((uint32) *((str) + 1) << 16) \
 | ((uint32) *((str) + 0) << 24); \
}
#endif

Sha384.h

#ifndef SHA384_H
#define SHA384_H
#include <string>

class SHA384
{
protected:

typedef unsigned char uint8;
typedef unsigned int uint32;

68 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

typedef unsigned long long uint64;

const static uint64 sha512_k[];
static const unsigned int SHA384_512_BLOCK_SIZE = (1024 / 8);

public:
void init();
void update(const unsigned char *message, unsigned int len);
void final(unsigned char *digest);
static const unsigned int DIGEST_SIZE = (384 / 8);

protected:
void transform(const unsigned char *message, unsigned int block_nb);
unsigned int m_tot_len;
unsigned int m_len;
unsigned char m_block[2 * SHA384_512_BLOCK_SIZE];
uint64 m_h[8];

};

std::string sha384(std::string input);

#define SHA2_SHFR(x, n) (x >> n)
#define SHA2_ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define SHA2_ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define SHA2_CH(x, y, z) ((x & y) ^ (~x & z))
#define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA512_F1(x) (SHA2_ROTR(x, 28) ^ SHA2_ROTR(x, 34) ^ SHA2_ROTR(x, 39))
#define SHA512_F2(x) (SHA2_ROTR(x, 14) ^ SHA2_ROTR(x, 18) ^ SHA2_ROTR(x, 41))
#define SHA512_F3(x) (SHA2_ROTR(x, 1) ^ SHA2_ROTR(x, 8) ^ SHA2_SHFR(x, 7))
#define SHA512_F4(x) (SHA2_ROTR(x, 19) ^ SHA2_ROTR(x, 61) ^ SHA2_SHFR(x, 6))
#define SHA2_UNPACK32(x, str) \
{ \
 *((str) + 3) = (uint8) ((x)); \
 *((str) + 2) = (uint8) ((x) >> 8); \
 *((str) + 1) = (uint8) ((x) >> 16); \
 *((str) + 0) = (uint8) ((x) >> 24); \
}
#define SHA2_UNPACK64(x, str) \
{ \
 *((str) + 7) = (uint8) ((x)); \
 *((str) + 6) = (uint8) ((x) >> 8); \
 *((str) + 5) = (uint8) ((x) >> 16); \
 *((str) + 4) = (uint8) ((x) >> 24); \
 *((str) + 3) = (uint8) ((x) >> 32); \
 *((str) + 2) = (uint8) ((x) >> 40); \
 *((str) + 1) = (uint8) ((x) >> 48); \

69 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

 *((str) + 0) = (uint8) ((x) >> 56); \
}
#define SHA2_PACK64(str, x) \
{ \
 *(x) = ((uint64) *((str) + 7)) \
 | ((uint64) *((str) + 6) << 8) \
 | ((uint64) *((str) + 5) << 16) \
 | ((uint64) *((str) + 4) << 24) \
 | ((uint64) *((str) + 3) << 32) \
 | ((uint64) *((str) + 2) << 40) \
 | ((uint64) *((str) + 1) << 48) \
 | ((uint64) *((str) + 0) << 56); \
}

#endif

Sha512.h

#ifndef SHA512_H
#define SHA512_H
#include <string>

class SHA512
{
protected:

typedef unsigned char uint8;
typedef unsigned int uint32;
typedef unsigned long long uint64;

const static uint64 sha512_k[];
static const unsigned int SHA384_512_BLOCK_SIZE = (1024 / 8);

public:
void init();
void update(const unsigned char *message, unsigned int len);
void final(unsigned char *digest);
static const unsigned int DIGEST_SIZE = (512 / 8);

protected:
void transform(const unsigned char *message, unsigned int block_nb);
unsigned int m_tot_len;

70 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

unsigned int m_len;
unsigned char m_block[2 * SHA384_512_BLOCK_SIZE];
uint64 m_h[8];

};

std::string sha512(std::string input);

#define SHA2_SHFR(x, n) (x >> n)
#define SHA2_ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define SHA2_ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n)))
#define SHA2_CH(x, y, z) ((x & y) ^ (~x & z))
#define SHA2_MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
#define SHA512_F1(x) (SHA2_ROTR(x, 28) ^ SHA2_ROTR(x, 34) ^ SHA2_ROTR(x, 39))
#define SHA512_F2(x) (SHA2_ROTR(x, 14) ^ SHA2_ROTR(x, 18) ^ SHA2_ROTR(x, 41))
#define SHA512_F3(x) (SHA2_ROTR(x, 1) ^ SHA2_ROTR(x, 8) ^ SHA2_SHFR(x, 7))
#define SHA512_F4(x) (SHA2_ROTR(x, 19) ^ SHA2_ROTR(x, 61) ^ SHA2_SHFR(x, 6))
#define SHA2_UNPACK32(x, str) \
{ \
 *((str) + 3) = (uint8) ((x)); \
 *((str) + 2) = (uint8) ((x) >> 8); \
 *((str) + 1) = (uint8) ((x) >> 16); \
 *((str) + 0) = (uint8) ((x) >> 24); \
}
#define SHA2_UNPACK64(x, str) \
{ \
 *((str) + 7) = (uint8) ((x)); \
 *((str) + 6) = (uint8) ((x) >> 8); \
 *((str) + 5) = (uint8) ((x) >> 16); \
 *((str) + 4) = (uint8) ((x) >> 24); \
 *((str) + 3) = (uint8) ((x) >> 32); \
 *((str) + 2) = (uint8) ((x) >> 40); \
 *((str) + 1) = (uint8) ((x) >> 48); \
 *((str) + 0) = (uint8) ((x) >> 56); \
}
#define SHA2_PACK64(str, x) \
{ \
 *(x) = ((uint64) *((str) + 7)) \
 | ((uint64) *((str) + 6) << 8) \
 | ((uint64) *((str) + 5) << 16) \
 | ((uint64) *((str) + 4) << 24) \
 | ((uint64) *((str) + 3) << 32) \
 | ((uint64) *((str) + 2) << 40) \
 | ((uint64) *((str) + 1) << 48) \
 | ((uint64) *((str) + 0) << 56); \
}

71 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

#endif

Md5.cpp

/* MD5
converted to C++ class by Frank Thilo(thilo@unix-ag.org)
for bzflag(http ://www.bzflag.org)

based on :

md5.h and md5.c
reference implemantion of RFC 1321

Copyright(C) 1991 - 2, RSA Data Security, Inc.Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc.MD5 Message - Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc.makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose.It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

* /

/* interface header */
#include "md5.h"

/* system implementation headers */
#include <cstdio>
#define _CRT_SECURE_NO_WARNINGS

72 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

// Constants for MD5Transform routine.
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

///

// F, G, H and I are basic MD5 functions.
inline MD5::uint4 MD5::F(uint4 x, uint4 y, uint4 z) {

return x & y | ~x&z;
}

inline MD5::uint4 MD5::G(uint4 x, uint4 y, uint4 z) {
return x & z | y & ~z;

}

inline MD5::uint4 MD5::H(uint4 x, uint4 y, uint4 z) {
return x ^ y^z;

}

inline MD5::uint4 MD5::I(uint4 x, uint4 y, uint4 z) {
return y ^ (x | ~z);

}

// rotate_left rotates x left n bits.
inline MD5::uint4 MD5::rotate_left(uint4 x, int n) {

return (x << n) | (x >> (32 - n));
}

// FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
// Rotation is separate from addition to prevent recomputation.
inline void MD5::FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {

a = rotate_left(a + F(b, c, d) + x + ac, s) + b;
}

73 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

inline void MD5::GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
a = rotate_left(a + G(b, c, d) + x + ac, s) + b;

}

inline void MD5::HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
a = rotate_left(a + H(b, c, d) + x + ac, s) + b;

}

inline void MD5::II(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
a = rotate_left(a + I(b, c, d) + x + ac, s) + b;

}

//

// default ctor, just initailize
MD5::MD5()
{

init();
}

//

// nifty shortcut ctor, compute MD5 for string and finalize it right away
MD5::MD5(const std::string &text)
{

init();
update(text.c_str(), text.length());
finalize();

}

//////////////////////////////

void MD5::init()
{

finalized = false;

count[0] = 0;
count[1] = 0;

// load magic initialization constants.
state[0] = 0x67452301;
state[1] = 0xefcdab89;
state[2] = 0x98badcfe;
state[3] = 0x10325476;

}

74 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

//////////////////////////////

// decodes input (unsigned char) into output (uint4). Assumes len is a multiple of 4.
void MD5::decode(uint4 output[], const uint1 input[], size_type len)
{

for (unsigned int i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((uint4)input[j]) | (((uint4)input[j + 1]) << 8) |
(((uint4)input[j + 2]) << 16) | (((uint4)input[j + 3]) << 24);

}

//////////////////////////////

// encodes input (uint4) into output (unsigned char). Assumes len is
// a multiple of 4.
void MD5::encode(uint1 output[], const uint4 input[], size_type len)
{

for (size_type i = 0, j = 0; j < len; i++, j += 4) {
output[j] = input[i] & 0xff;
output[j + 1] = (input[i] >> 8) & 0xff;
output[j + 2] = (input[i] >> 16) & 0xff;
output[j + 3] = (input[i] >> 24) & 0xff;

}
}

//////////////////////////////

// apply MD5 algo on a block
void MD5::transform(const uint1 block[blocksize])
{

uint4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
decode(x, block, blocksize);

/* Round 1 */
FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */
FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */

75 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

/* Round 2 */
GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

/* Round 3 */
HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */

/* Round 4 */
II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */

76 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */

state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;

// Zeroize sensitive information.
memset(x, 0, sizeof x);

}

//////////////////////////////

// MD5 block update operation. Continues an MD5 message-digest
// operation, processing another message block
void MD5::update(const unsigned char input[], size_type length)
{

// compute number of bytes mod 64
size_type index = count[0] / 8 % blocksize;

// Update number of bits
if ((count[0] += (length << 3)) < (length << 3))

count[1]++;
count[1] += (length >> 29);

// number of bytes we need to fill in buffer
size_type firstpart = 64 - index;

size_type i;

// transform as many times as possible.
if (length >= firstpart)
{

// fill buffer first, transform
memcpy(&buffer[index], input, firstpart);
transform(buffer);

// transform chunks of blocksize (64 bytes)
for (i = firstpart; i + blocksize <= length; i += blocksize)

77 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

transform(&input[i]);

index = 0;
}
else

i = 0;

// buffer remaining input
memcpy(&buffer[index], &input[i], length - i);

}

//////////////////////////////

// for convenience provide a verson with signed char
void MD5::update(const char input[], size_type length)
{

update((const unsigned char*)input, length);
}

//////////////////////////////

// MD5 finalization. Ends an MD5 message-digest operation, writing the
// the message digest and zeroizing the context.
MD5& MD5::finalize()
{

static unsigned char padding[64] = {
 0x80, 0,
 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

if (!finalized) {
// Save number of bits
unsigned char bits[8];
encode(bits, count, 8);

// pad out to 56 mod 64.
size_type index = count[0] / 8 % 64;
size_type padLen = (index < 56) ? (56 - index) : (120 - index);
update(padding, padLen);

// Append length (before padding)
update(bits, 8);

// Store state in digest
encode(digest, state, 16);

78 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

// Zeroize sensitive information.
memset(buffer, 0, sizeof buffer);
memset(count, 0, sizeof count);

finalized = true;
}

return *this;
}

//////////////////////////////

// return hex representation of digest as string
std::string MD5::hexdigest() const
{

if (!finalized)
return "";

char buf[33];
for (int i = 0; i < 16; i++)

sprintf(buf + i * 2, "%02x", digest[i]);
buf[32] = 0;

return std::string(buf);
}

//////////////////////////////

std::ostream& operator<<(std::ostream& out, MD5 md5)
{

return out << md5.hexdigest();
}

//////////////////////////////

std::string md5(const std::string str)
{

MD5 md5 = MD5(str);

return md5.hexdigest();
}

Sha224.cpp

79 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

#define _CRT_SECURE_NO_WARNINGS
#include <cstring>
#include <fstream>
#include "sha224.h"

const unsigned int SHA224::sha256_k[64] = //UL = uint32
{ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 };

void SHA224::init()
{

m_h[0] = 0xc1059ed8;
m_h[1] = 0x367cd507;
m_h[2] = 0x3070dd17;
m_h[3] = 0xf70e5939;
m_h[4] = 0xffc00b31;
m_h[5] = 0x68581511;
m_h[6] = 0x64f98fa7;
m_h[7] = 0xbefa4fa4;
m_len = 0;
m_tot_len = 0;

}

void SHA224::update(const unsigned char *message, unsigned int len)
{

unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const unsigned char *shifted_message;
tmp_len = SHA224_256_BLOCK_SIZE - m_len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&m_block[m_len], message, rem_len);
if (m_len + len < SHA224_256_BLOCK_SIZE) {

80 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

m_len += len;
return;

}
new_len = len - rem_len;
block_nb = new_len / SHA224_256_BLOCK_SIZE;
shifted_message = message + rem_len;
transform(m_block, 1);
transform(shifted_message, block_nb);
rem_len = new_len % SHA224_256_BLOCK_SIZE;
memcpy(m_block, &shifted_message[block_nb << 6], rem_len);
m_len = rem_len;
m_tot_len += (block_nb + 1) << 6;

}

void SHA224::final(unsigned char *digest)
{

unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
int i;
block_nb = (1 + ((SHA224_256_BLOCK_SIZE - 9)

< (m_len % SHA224_256_BLOCK_SIZE)));
len_b = (m_tot_len + m_len) << 3;
pm_len = block_nb << 6;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = 0x80;
SHA2_UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);
for (i = 0; i < 7; i++) {

SHA2_UNPACK32(m_h[i], &digest[i << 2]);
}

}

void SHA224::transform(const unsigned char *message, unsigned int block_nb)
{

uint32 w[64];
uint32 wv[8];
uint32 t1, t2;
const unsigned char *sub_block;
int i;
int j;
for (i = 0; i < (int)block_nb; i++) {

sub_block = message + (i << 6);
for (j = 0; j < 16; j++) {

SHA2_PACK32(&sub_block[j << 2], &w[j]);
}
for (j = 16; j < 64; j++) {

81 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

w[j] = SHA256_F4(w[j - 2]) + w[j - 7] + SHA256_F3(w[j - 15]) + w[j -
16];

}
for (j = 0; j < 8; j++) {

wv[j] = m_h[j];
}
for (j = 0; j < 64; j++) {

t1 = wv[7] + SHA256_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6])
+ sha256_k[j] + w[j];

t2 = SHA256_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;

}
for (j = 0; j < 8; j++) {

m_h[j] += wv[j];
}

}
}

std::string sha224(std::string input)
{

unsigned char digest[SHA224::DIGEST_SIZE];
memset(digest, 0, SHA224::DIGEST_SIZE);
SHA224 ctx = SHA224();
ctx.init();
ctx.update((unsigned char*)input.c_str(), input.length());
ctx.final(digest);

char buf[2 * SHA224::DIGEST_SIZE + 1];
buf[2 * SHA224::DIGEST_SIZE] = 0;
for (int i = 0; i < SHA224::DIGEST_SIZE; i++)

sprintf(buf + i * 2, "%02x", digest[i]);
return std::string(buf);

}

Sha256.cpp

82 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

#define _CRT_SECURE_NO_WARNINGS
#include <cstring>
#include <fstream>
#include "sha256.h"

const unsigned int SHA256::sha256_k[64] = //UL = uint32
{ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 };

void SHA256::transform(const unsigned char *message, unsigned int block_nb)
{

uint32 w[64];
uint32 wv[8];
uint32 t1, t2;
const unsigned char *sub_block;
int i;
int j;
for (i = 0; i < (int)block_nb; i++) {

sub_block = message + (i << 6);
for (j = 0; j < 16; j++) {

SHA2_PACK32(&sub_block[j << 2], &w[j]);
}
for (j = 16; j < 64; j++) {

w[j] = SHA256_F4(w[j - 2]) + w[j - 7] + SHA256_F3(w[j - 15]) + w[j -
16];

}
for (j = 0; j < 8; j++) {

wv[j] = m_h[j];
}
for (j = 0; j < 64; j++) {

t1 = wv[7] + SHA256_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6])

83 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

+ sha256_k[j] + w[j];
t2 = SHA256_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;

}
for (j = 0; j < 8; j++) {

m_h[j] += wv[j];
}

}
}

void SHA256::init()
{

m_h[0] = 0x6a09e667;
m_h[1] = 0xbb67ae85;
m_h[2] = 0x3c6ef372;
m_h[3] = 0xa54ff53a;
m_h[4] = 0x510e527f;
m_h[5] = 0x9b05688c;
m_h[6] = 0x1f83d9ab;
m_h[7] = 0x5be0cd19;
m_len = 0;
m_tot_len = 0;

}

void SHA256::update(const unsigned char *message, unsigned int len)
{

unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const unsigned char *shifted_message;
tmp_len = SHA224_256_BLOCK_SIZE - m_len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&m_block[m_len], message, rem_len);
if (m_len + len < SHA224_256_BLOCK_SIZE) {

m_len += len;
return;

}
new_len = len - rem_len;
block_nb = new_len / SHA224_256_BLOCK_SIZE;
shifted_message = message + rem_len;
transform(m_block, 1);

84 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

transform(shifted_message, block_nb);
rem_len = new_len % SHA224_256_BLOCK_SIZE;
memcpy(m_block, &shifted_message[block_nb << 6], rem_len);
m_len = rem_len;
m_tot_len += (block_nb + 1) << 6;

}

void SHA256::final(unsigned char *digest)
{

unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
int i;
block_nb = (1 + ((SHA224_256_BLOCK_SIZE - 9)

< (m_len % SHA224_256_BLOCK_SIZE)));
len_b = (m_tot_len + m_len) << 3;
pm_len = block_nb << 6;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = 0x80;
SHA2_UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);
for (i = 0; i < 8; i++) {

SHA2_UNPACK32(m_h[i], &digest[i << 2]);
}

}

std::string sha256(std::string input)
{

unsigned char digest[SHA256::DIGEST_SIZE];
memset(digest, 0, SHA256::DIGEST_SIZE);

SHA256 ctx = SHA256();
ctx.init();
ctx.update((unsigned char*)input.c_str(), input.length());
ctx.final(digest);

char buf[2 * SHA256::DIGEST_SIZE + 1];
buf[2 * SHA256::DIGEST_SIZE] = 0;
for (int i = 0; i < SHA256::DIGEST_SIZE; i++)

sprintf(buf + i * 2, "%02x", digest[i]);
return std::string(buf);

}

85 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

Sha384.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <cstring>
#include <fstream>
#include "sha384.h"

const unsigned long long SHA384::sha512_k[80] = //ULL = uint64
{ 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,

86 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL };

void SHA384::init()
{

m_h[0] = 0xcbbb9d5dc1059ed8ULL;
m_h[1] = 0x629a292a367cd507ULL;
m_h[2] = 0x9159015a3070dd17ULL;
m_h[3] = 0x152fecd8f70e5939ULL;
m_h[4] = 0x67332667ffc00b31ULL;
m_h[5] = 0x8eb44a8768581511ULL;
m_h[6] = 0xdb0c2e0d64f98fa7ULL;
m_h[7] = 0x47b5481dbefa4fa4ULL;
m_len = 0;
m_tot_len = 0;

}

void SHA384::update(const unsigned char *message, unsigned int len)
{

unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const unsigned char *shifted_message;
tmp_len = SHA384_512_BLOCK_SIZE - m_len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&m_block[m_len], message, rem_len);
if (m_len + len < SHA384_512_BLOCK_SIZE) {

m_len += len;
return;

}
new_len = len - rem_len;
block_nb = new_len / SHA384_512_BLOCK_SIZE;
shifted_message = message + rem_len;
transform(m_block, 1);
transform(shifted_message, block_nb);
rem_len = new_len % SHA384_512_BLOCK_SIZE;
memcpy(m_block, &shifted_message[block_nb << 7], rem_len);
m_len = rem_len;
m_tot_len += (block_nb + 1) << 7;

}

void SHA384::final(unsigned char *digest)
{

unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
int i;
block_nb = (1 + ((SHA384_512_BLOCK_SIZE - 17)

87 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

< (m_len % SHA384_512_BLOCK_SIZE)));
len_b = (m_tot_len + m_len) << 3;
pm_len = block_nb << 7;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = 0x80;
SHA2_UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);
for (i = 0; i < 6; i++) {

SHA2_UNPACK64(m_h[i], &digest[i << 3]);
}

}

void SHA384::transform(const unsigned char *message, unsigned int block_nb)
{

uint64 w[80];
uint64 wv[8];
uint64 t1, t2;
const unsigned char *sub_block;
int i, j;
for (i = 0; i < (int)block_nb; i++) {

sub_block = message + (i << 7);
for (j = 0; j < 16; j++) {

SHA2_PACK64(&sub_block[j << 3], &w[j]);
}
for (j = 16; j < 80; j++) {

w[j] = SHA512_F4(w[j - 2]) + w[j - 7] + SHA512_F3(w[j - 15]) + w[j -
16];

}
for (j = 0; j < 8; j++) {

wv[j] = m_h[j];
}
for (j = 0; j < 80; j++) {

t1 = wv[7] + SHA512_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6])
+ sha512_k[j] + w[j];

t2 = SHA512_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;

}
for (j = 0; j < 8; j++) {

m_h[j] += wv[j];
}

88 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

}
}

std::string sha384(std::string input)
{

unsigned char digest[SHA384::DIGEST_SIZE];
memset(digest, 0, SHA384::DIGEST_SIZE);
SHA384 ctx = SHA384();
ctx.init();
ctx.update((unsigned char*)input.c_str(), input.length());
ctx.final(digest);

char buf[2 * SHA384::DIGEST_SIZE + 1];
buf[2 * SHA384::DIGEST_SIZE] = 0;
for (int i = 0; i < SHA384::DIGEST_SIZE; i++)

sprintf(buf + i * 2, "%02x", digest[i]);
return std::string(buf);

}

Sha512.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <cstring>
#include <fstream>
#include "sha512.h"

const unsigned long long SHA512::sha512_k[80] = //ULL = uint64
{ 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,

89 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL };

void SHA512::transform(const unsigned char *message, unsigned int block_nb)
{

uint64 w[80];
uint64 wv[8];
uint64 t1, t2;
const unsigned char *sub_block;
int i, j;
for (i = 0; i < (int)block_nb; i++) {

sub_block = message + (i << 7);
for (j = 0; j < 16; j++) {

SHA2_PACK64(&sub_block[j << 3], &w[j]);
}
for (j = 16; j < 80; j++) {

w[j] = SHA512_F4(w[j - 2]) + w[j - 7] + SHA512_F3(w[j - 15]) + w[j -
16];

}
for (j = 0; j < 8; j++) {

wv[j] = m_h[j];
}
for (j = 0; j < 80; j++) {

t1 = wv[7] + SHA512_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6])

90 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

+ sha512_k[j] + w[j];
t2 = SHA512_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);
wv[7] = wv[6];
wv[6] = wv[5];
wv[5] = wv[4];
wv[4] = wv[3] + t1;
wv[3] = wv[2];
wv[2] = wv[1];
wv[1] = wv[0];
wv[0] = t1 + t2;

}
for (j = 0; j < 8; j++) {

m_h[j] += wv[j];
}

}
}

void SHA512::init()
{

m_h[0] = 0x6a09e667f3bcc908ULL;
m_h[1] = 0xbb67ae8584caa73bULL;
m_h[2] = 0x3c6ef372fe94f82bULL;
m_h[3] = 0xa54ff53a5f1d36f1ULL;
m_h[4] = 0x510e527fade682d1ULL;
m_h[5] = 0x9b05688c2b3e6c1fULL;
m_h[6] = 0x1f83d9abfb41bd6bULL;
m_h[7] = 0x5be0cd19137e2179ULL;
m_len = 0;
m_tot_len = 0;

}

void SHA512::update(const unsigned char *message, unsigned int len)
{

unsigned int block_nb;
unsigned int new_len, rem_len, tmp_len;
const unsigned char *shifted_message;
tmp_len = SHA384_512_BLOCK_SIZE - m_len;
rem_len = len < tmp_len ? len : tmp_len;
memcpy(&m_block[m_len], message, rem_len);
if (m_len + len < SHA384_512_BLOCK_SIZE) {

m_len += len;
return;

}
new_len = len - rem_len;
block_nb = new_len / SHA384_512_BLOCK_SIZE;
shifted_message = message + rem_len;

91 | Page

Jo
na

h M
cE

lfa
tric

k

Transmitting and Storing Data Securely in 2020 – Jonah McElfatrick

transform(m_block, 1);
transform(shifted_message, block_nb);
rem_len = new_len % SHA384_512_BLOCK_SIZE;
memcpy(m_block, &shifted_message[block_nb << 7], rem_len);
m_len = rem_len;
m_tot_len += (block_nb + 1) << 7;

}

void SHA512::final(unsigned char *digest)
{

unsigned int block_nb;
unsigned int pm_len;
unsigned int len_b;
int i;
block_nb = 1 + ((SHA384_512_BLOCK_SIZE - 17)

< (m_len % SHA384_512_BLOCK_SIZE));
len_b = (m_tot_len + m_len) << 3;
pm_len = block_nb << 7;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = 0x80;
SHA2_UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);
for (i = 0; i < 8; i++) {

SHA2_UNPACK64(m_h[i], &digest[i << 3]);
}

}

std::string sha512(std::string input)
{

unsigned char digest[SHA512::DIGEST_SIZE];
memset(digest, 0, SHA512::DIGEST_SIZE);
SHA512 ctx = SHA512();
ctx.init();
ctx.update((unsigned char*)input.c_str(), input.length());
ctx.final(digest);

char buf[2 * SHA512::DIGEST_SIZE + 1];
buf[2 * SHA512::DIGEST_SIZE] = 0;
for (int i = 0; i < SHA512::DIGEST_SIZE; i++)

sprintf(buf + i * 2, "%02x", digest[i]);
return std::string(buf);

}

92 | Page

