Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

B>
-
B <X

% Abertay
University

Keeping Data Secure in 2020

Ensuring data is kept safe

Jonah McElfatrick

Note that Information contained in this document is for educational purposes.

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Executive Summary

This paper will demonstrate to the reader, how to keep data secure in the modern day. This will include
how to transmit data securely through different methods as well as keeping data secure when being
stored in a database or file system. It is important to understand the differences between secure
transmission protocols and un-secure transmission protocols and how one can be more secure than the
other. In this paper it can be seen the difference between secure and unsecure methods of transporting
data. Storing data is just as important if not more important than transmitting data. Securing data when
it is being stored is vital for good security measures. Stored data is usually the main focus for an attacker
as it gives them more time to attempt to steal the data as the data is not been moved or transmitted.

A demonstration is carried out to show the difference between HTTP and HTTPS. A network protocol
analyzer was used to capture traffic in transit over a network and therefore allows for a comparison
between security methods used by both HTTP and HTTPS to be able to see which one would be
considered more secure and why.

A piece of software called Kleopatra is used and demonstrated using both the command line interface
and the graphical user interface in this paper as an alternative way to use the same secure encryption
method that is used by HTTPS. This allows for a greater understanding of what happens when the data is
being sent behind the scenes of a web browser.

As Kleopatra and HTTPS use the same encryption method, the mathematics behind the encryption
method used by both methods is explored and explained to give the reader a more in depth
understanding of how the data is being secured and how reliable and robust it is.

Storing data securely is also a large part of the data’s life along with the transmission of data. Therefore
in this paper, a comparison between different modern hashing algorithms has been carried out. This
included researching any existing issues with the hashing algorithms, along with individual testing with
an implemented password cracker to observe which hashing algorithms could possibly take longer
and/or are harder to crack. It was observed that the MD5 hashing algorithm is no longer suitable for
modern secure hashing of data.

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

+Contents

Introduction
Background
Aim
Procedure & Results
Overview of Procedure
HTTP & HTTPS
Using HTTP
Using HTTPS
Alternative transmission Method — gpgd4win Example
GUI (Graphical User Interface)
Generating Key Pair
Exporting Public Key
Distributing Public Key
Importing the Public Key
Encrypting a file
Decrypting the file
CLI (Command Line Interface)
Generating Key Pair
Sending Public Key and Encrypting Data
RSA Encryption
Storing data securely
Discussion
General Discussion
Countermeasures
Conclusions
Future Work

References

Appendices

w

~ b~ W

11
14
14
17
19
19
21
22
24
24
27
31
33
44
44
44
44
45

46

48

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Appendix A — OpenPGP certificate
Appendix B — Public Key

Appendix C — Multi-Threaded Password Cracker

48
49
51

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

1 INTRODUCTION

1.1 BACKGROUND

In the 21% century, the world revolves around computers. From your average desktop computers, to
smartphones to 10T (Internet of Things) devices such as remote-controlled lightbulbs, each one of these
devices communicates with each other and transfers and stores data. In the modern day, there is data
stored about almost everyone and everything on the planet. This can range from pricing of items on an
online marketplace, what that odd-looking flower is in your back garden, who that actor was in your
favorite movie, to more personal and sensitive information about people themselves. Taking online
marketplaces as an example, most users that would be members of a marketplace website would have
details such as their name, email, password and bank account details registered to that account. All of
these details are sent across a network and then stored by the marketplace website company on their
servers. In turn, this means that pressure is then placed onto the companies shoulders to keep this
information safe from any malicious attacker, both in data transit and storage. One of the most common
pieces of information that is considered sensitive information and is used for almost every kind of
account is passwords. With passwords being used to access almost every form of modern account it is
one of the main focuses of attackers to gain access to. This would in turn allow the attacker to try other
accounts and repeat the process. Wired.com reported “Now, it seems, someone has cobbled together
those breached databases and many more into a gargantuan, unprecedented collection of
2.2 billion unique usernames and associated passwords and is freely distributing them” (Greenberg,
2020) This indicates the need to ensure that sensitive information such as passwords are kept secure and
are unreadable to any attacker that may gain access to them.

In previous years there was a lower required level of security, but as computers and technology have
advanced and developed over the years, so has the increase in need for more complex and thorough
security methods. Network traffic can now be captured with most modern devices and some free
software. Lower levels of encryption and hashing methods are now outdated and can be cracked with
consumer level hardware. With this possible, more in-depth and complex security methods have had to
be developed and implemented to keep data secure from prying eyes.

There are many different ways to ensure that your data is kept safe when both being transported and
stored. These methods range in difficulty to use and understand. Encryption can be used to obscure
sensitive data being transported between devices. Encryption is the method of obscuring data by
passing it through a mathematical algorithm. The most common method to encrypting data traffic is
using HTTPS. This is due to it being the standard for transmitting data through a web browser to a web
server. This is to keep the user’s data safe. HTTPS uses the TLS (Transport Layer Security) protocol,
formerly known as SSL (Secure Socket Layer), this protocol uses two different keys in an asymmetric key
structure called RSA (Rivest-Shamir-Adleman) encryption. This method is also commonly known as
public-key encryption. The two keys consist of a private key and a public key. The private key is linked to
the owner, in this case the website, and is held on the webserver to decrypt incoming traffic to the
server. The public key is distributed by the webserver to whoever is wanting to communicate with it. This
allows the client to encrypt and send data securely to the server which will then decrypt the data.

1| Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

However, even though this secures the data when being transmitted to the web server, when the data is
being stored in the web server then a different method is required to secure the data. Hashing
algorithms are a method of storing sensitive information inside of database’s without being in a plain
text form that is easy to read if accessed. This is carried out by passing in a value through the one-way
mathematical algorithm. This means that the hash is very difficult, almost impossible to reverse. There
are varying levels of complexity when it comes to hashing algorithms. Some of the lower level
complexity algorithms, MD4, MD5 and a mid-range algorithm SHA-256 are among the most commonly
known algorithms. MD4 and MD5 are commonly known to be used to verifying the integrity of
downloaded files from the internet to ensure that the file has not been altered in transit. SHA-256 is the
basic standard of what should be used to store sensitive information. There are more complex
algorithms such as SHA-384 and SHA-512, these are more complex versions of SHA-256 and are
considered more secure to use. These are analyzed and discussed later in the paper.

1.2 Amwm

The aims of this project are:

e To allow the reader to gain an understanding of why keeping data hidden and stored correctly is
imperative for secure data handling.
To demonstrate different methods on how to securely transmit data over a network.
To understand the mathematics behind RSA encryption used by HTTPS and Kleopatra.
To demonstrate how to store sensitive data, such as passwords, securely and how attackers may
try to break any attempt to obscure the data.

2 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

2 PRrocepure & REsuULTS

2.1 OvVERVIEW OF PROCEDURE

In the following procedure, it will explain different methods in keeping data safe while being transmitted
or being stored on a computer. This will include transmitting data through a web browser, transmitting
data privately and then storing sensitive data such as passwords on a computer or database. The
procedure contains:

e A demonstration of the difference between using HTTP and HTTPS when transmitting data over
a web browser and how one is better than the other.

e A demonstration on how to use the Kleopatra software in conjunction with Gpg4win to send
encrypted data through other methods than through a web browser.

e Both HTTPS and Kleopatra use RSA encryption, following the demonstrations on HTTPS and
Kleopatra, the mathematics behind RSA encryption is explored and explained to give an
understanding of how it is secure to encrypt data using this method.

e A comparison and demonstration between different hashing algorithms for securely storing data
effectively and correctly. A password cracker implementation to demonstrate which hashes are
easier to crack than others.

3 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

2.2 HTTP & HTTPS

HTTPS uses SSL certificates along with RSA encryption to ensure that the users’ data is kept secure when
being transmitted over a network. HTTP does not have any of these traits. HTTP uses no encryption to
request and send data. This means that the user’s data is sent over a network without being encrypted.

To show the difference between captured traffic using the two different protocols, HTTP and HTTPS, a
piece of software called Wireshark was used. This allows for the packets on a network to be captured
and possibly viewed depending on the protocol being used.

2.2.1 Using HTTP

The first step in analyzing HTTP packets is to navigate to a website using HTTP. In this case a local
webserver and website were being used to demonstrate this. The website used can be seen in figure 1
below.

C ® localhost

Astley

FOR SUPPORT MAILUS: SERVICE HELPLINE CALL US:
© carrentat rickastley@astleycars.com +999898989898 [f]v Jinjc-]

HOME ABOUTUS CARLISTING ‘CONTACT US

FIND THE RIGHT
AR FORMQU.

ve more than a thousand cars
for ¥d8 to choose.

Figure 1: HTTP website

From here, Wireshark was launched. A list of connections can be seen on the home screen of Wireshark.
Since the website that is being monitored is on the local machine, the loopback connection is the one we
are interested in. This can be seen | figure 2 below.

4 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Welcome to Wireshark

Capture

...using this filter: [|Ente|' a capture filter ... '] Allinterfaces shown ¥

WMware Network Adapter VMnetS ©
Ethernet J—
Local Area Connection™ 7 J—
Local Area Connection® 6 J—
Local Area Connection™ & J—
Vhware Network Adapter VMnet! ___
Adapter for loopback traffic capture __

Figure 2: Wireshark Home Page

Once the loopback traffic capture has been selected, then navigating back to the website. Login details
are entered into the login portal. This can be seen in figure 3 below.

Login

hacklab@hacklab.com

o'oooon‘

=]

Don't have an account? Signup Here
Forgot Password ?

Figure 3: Login Portal

Going back to Wireshark, the traffic we are interested in is HTTP traffic. A filter can be placed on the
captured packets. This can be seen in figure 4 below where the filter of ‘http’ was used.

[T [http
Source Destination Protocol Length Info
333l 283l HTTP 983 POST /17e8463%20-%¥2@original/ HTTP/1.1 (application/x-www-form-urlencoded)
112 6.456151 523l =33l HTTP 5388 HTTP/1.1 280 0K (text/html)
114 6.513888 5=l =2l HTTP 784 GET /1708463%20-%280riginal/ HTTP/1.1
163 8.531591 5=l 1 HTTP 5351 HTTP/1.1 288 OK (text/html})

Figure 4: Filter HTTP

Clicking on the first packet in the list, it can be seen that the username and password that were entered
can be seen in plain text. This can be seen in figure 5 below where the username reads
‘hacklab@hacklab.com’ and the password reads ‘Hacklab1’.

5| Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Mo. Time Source Destination
52 4.437188

112 6.456151

114 6.513888 EE

163 8.531591 11l il

Protocol Length Info

HTTP 983 POST /1788463%28-%2@0riginal/ HTTP/1.1 (application/x-www-form-urlencoded)
HTTP 5388 HTTP/1.1 288 OK (text/html})

HTTP 784 GET /1788463%20-%280riginal/ HTTP/L1.1

HTTP 5351 HTTP/1.1 288 0K (text/html)

Null/Loopback
Internet Protocol Version 6, Src: ::1, Dst: ::1

Hypertext Transfer Protocol

Form item: "email” = “hacklabf@hacklab.com™
Form item: "password”™ = "Hacklabl™
Form item: "login” = "Login”

¥ HTML Form URL Encoded: application/x-www-form-urlencoded

Transmission Control Protocol, Src Port: 34469, Dst Port: 80, Seq: 1, Ack: 1, Len: 839

Figure 5: Captured Details

Frame 52: 983 bytes on wire (7224 bits), 983 bytes captured (7224 bits) on interface \Device\NPF_Loopback, id @

There is another method to view any data that has been captured if there are many more packets and
are not able to find the exact one that represents the posting of the variables from the login page. This
can be completed by navigating to the top menu and clicking on Analyze -> Follow -> HTTP Stream. This

can be seen in figure 6 below.

£ *Adapter for loopback traffic capture

File Edit WView Go Capture Analyze Statistics Telephony Wireless

ma® R |G

Ma, me Source
.434956 35 |

434985
435828
437188
LA37128
.456151

LA56174

113

LW [l e T Bx ¥

R A = =

Frame 52: 983 bytes on wi
Mull/Loopback

Internet Protocol Version

Transmission Control Prot

Hypertext Transfer Protoc

“ HTML Form URL Encoded: ap

Form item: "email™ = "I

Form item: "password” :

Display Filters..,

Display Filter Macros...
Display Filter Expression..,

Apply as Column
Apply as Filter
Prepare a Filter

Conversation Filter

Enabled Protocols...

Decode As...

Reload Lua Plugins

SCTP

Follow

Show Packet Bytes...

Expert Information

Ctrl+ Shift+1

Ctrl+Shift+E

Ctrl+Shift+L

Ctrl+Shift+ 0

Tools Help

i)

frotocol Length Info

rcp 76 34469 - 38 [SYN] Seq
rcp 76 88 + 34469 [SYN, ACK
rcp 64 34469 = 88 [ACK] Seq
iTTP 983 POST /1709463%20-%20
rce G4 88 + 34469 [ACK] Seq
iTTP 5388 HTTP/1.1 288 0K (te
rcp G4 34469 = 38 [ACK] Seq
T Jna T laTnandca¥an oo

24 bits) on interface \Device\NPF

wn: 1. Ack: 1. len: 839

TCP Stream Ctrl+Alt+Shift+ T
UDP Stream Ctrl+Alt+Shift+L
TLS Stream Ctrl+Alt+Shift+5

HTTP Stream Ctrl+Alt+Shift+H

Form item: “"login" = "Logzn

Figure 6: Route to HTTP Stream

HTTR/2 Stream
QUIC Stream

After following the HTTP stream, a window should appear with all the HTTP information that was
captured from the packets. As can be seen highlighted in figure 7 below, the username and password

6 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

that were entered into the prompted fields are clearly visible in plaintext with no security precautions to

get past.

POST /178@463%20-%2@0original/ HTTP/1.1

Host: localhost

Connection: keep-alive

Content-Length: 57

Cache-Control: max-age=8

Origin: http://localhost
Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

Sec-Fetch-Dest: document

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: 21

Referer: http://localhost/17@@463%28-%260riginal/
Accept-Encoding: gzip, deflate, br
Accept-Language: en-GB,en-US;q=8.9,en;q=0.8

Cookie: PHPSESSID=91119e9c481b71ba75f82a52bc771b30

email=hacklab®48hacklab.com@password=Hacklabl&login=LoginHTTP/1.1 288 OK
Date: Sun, 29 Mar 2828 18:81:83 GMT

Server: Apache

X-Powered-By: PHP/7.3.8

Expires: Thu, 19 Nov 1981 ©8:52:80 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache

Vary: Accept-Encoding,User-Agent

Content-Encoding: gzip

Content-Length: 4941

Keep-Alive: timeout=5, max=18@

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

Figure 7: Captured HTTP Stream

2.2.2 Using HTTPS

User-Agent: Mozilla/5.8 (Windows NT 16.8; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/B88.8.3987.149 Safari/537.36

Accept: text/html,application/xhtml+sml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q-06.9

The first step in analyzing HTTPS packets in booting up Wireshark and capturing packets from the relative
connection point. A list of connections will be displayed at startup. This can be seen in figure 8 below.

Welcome to Wireshark

Capture

using this filter: [|Enter a capture filter

'] Allinterfaces shown ¥

VMware Network Adapter VMnet8 :
Ethernet

Local Area Connection™ 7
Local Area Connection™ &
Local Area Connection™ 8
VMware Network Adapter VMnet! ___
Adapter for loopback traffic capture __

Figure 8: Wireshark Home Screen

In this case the connection point is Ethernet. Clicking on this option then starts the capture process of all
traffic going through the connection. Navigating to a website such as www.Amazon.co.uk and viewing
the navigation bar shows that a padlock is visible. This can be seen in figure 9 below. This indicates that

the website is using HTTPS.

7 | Page

http://www.amazon.co.uk

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

B} Amazon.co.uk: Low Prices in Elec X +

amazon.co.uk

Best Sellers Prime Video Help New Releases Books Giftldeas Gift Cards & Top Up

@ Select your address

Figure 9: HTTPS Website

Once navigating to the login page and entering login details, these packets should be captured by
Wireshark. Since HTTPS runs using SSL (Secure Socket Layer) encryption then a filter can be put in place
to filter just the HTTPS traffic. This can be seen in figure 10 below.

[EIE BEd -]+
MNo. Time Source Destination Protocal Length Info £

1538 63.519673 152.199.19.161 192.168.1.15 TLSv1.2 92 Application Data

1532 63.519965 192.168.1.15 152.199.19.161 TLSv1.2 92 Application Data

1533 63.5208222 152.199.19.161 192.168.1.15 TLSv1.2 531 Application Data, Application Data, Application Data

1539 6£3.555919 192.168.1.15 46.126.1.138 TLSv1.2 268 Client Hello

1541 63.586115 408.126.1.138 192.168.1.15 TCP 15086 443 + 11163 [ACK] Seq=1 Ack=215 Win=262656 Len=1452 [TCP segment of a reassembled PDU]

1546 63.586435 48.126.1.138 192.168.1.15 TLSv1.2 115 Server Hello, Certificate, Server Key Exchange, Server Hello Done

1548 63.591126 192.168.1.15 18.289.281.158 TLSv1.2 127 Application Data

1549 62.597298 192.168.1.15 40.126.1.130 TLSv1.2 188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message

1558 63.625772 48.126.1.138 192.168.1.15 TLSv1.2 185 Change Cipher Spec, Encrypted Handshake Message

1552 £3.626414 192.168.1.15 48.126.1.130 TLSv1.2 714 Application Data

1553 B63.626457 192.168.1.15 48.126.1.130 TLSv1.2 369 Application Data

1555 63.665463 48.126.1.138 192.168.1.15 TLSv1.2 188@ Application Data

1557 B3.673864 192.168.1.15 48.126.1.130 TLSv1.2 795 Application Data

1558 63.673890 192.168.1.15 40.126.1.130 TLSv1.2 2511 Application Data

1550 63.67453¢ 13.167.18.11 192.168.1.15 TLSv1.2 528 Application Data

1560 63.67453¢ 13.167.18.11 192.168.1.15 TLSvi.2 92 Application Data

1562 63.682979 18.209.201.158 192.168.1.15 TLSv1.2 145 Application Data

1566 63.8220881 44.126.1.138 192.168.1.15 TCP 1586 443 = 11163 [ACK] 5eq=5495 Ack=4514 Win=261632 Len=1452 [TCP segment of a reassembled PDU]

1573 63.822795 44.126.1.138 192.168.1.15 TLSv1.2 911 Application Data

1602 67.697172 192.168.1.15 28.36.72.49 TLSv1.2 296 Client Hello

1683 67.851463 192.168.1.15 284.79.197.200 TLSv1.2 1514 Application Data

1684 67.851527 192.168.1.15 284.79.197.200 TLSv1.2 15286 Application Data

1685 67.851557 192.168.1.15 284.79.197.200 TLSv1.2 92 Application Data

1619 67.917469 284.79.197.206 192.168.1.15 TLSv1.2 197 Application Data

1621 67.968238 28.36.72.49 192.168.1.15 TCP 1586 443 » 11164 [ACK] Seq=1 Ack=243 Win=262656 Len=1452 [TCP segment of a reassembled PDU]

1628 67.968528 28.36.72.49 192.168.1.15 TLSv1.2 146 Server Helle, Certificate, Certificate Status, Server Key Exchange, Server Hello Done

1638 67.970738 192.168.1.15 20.36.72.49 TLSv1.2 147 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message

Figure 10: Filter SSL

From here, you are able to view any content that can be deciphered by viewing the TLS (Transport Layer
Security) stream. This can be done by navigating to the following Analyze -> Follow -> TLS Stream. This
can be seen in figure 11 below.

8 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Figure 11: Route to TLS Stream

£ *Ethernet
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
i ® k= Display Filters... LEd
(W [ssl Display Filter Macros...
Ma. Time Source Display Filter Expression.. rotocol Length Info
i 1911 75.885329 52.1a Aol Col Cirl+Shift+| L5vl.2 299 Server Hello, Certif
+ +
| 1913 75.887122 192.1 PRl a5 -olumn re= Lsvl.2 212 Client Key Exchange,
! 1914 75.987986 52.1@ Apply as Filter * [Lsvl.2 185 Change Cipher Spec,
| 1915 75.908331 192.1 Prepare a Filter » [Lsvi.2 393 Application Data
i 1916 75.988364 192.1 . : [LSv1.2 8834 Application Data
i Conversation Filter » i]
! 1921 76.823875 52.16 [LSv1.2 1222 Application Data
i 1938 7B8.474811 1le4.1 Enabled Protocols... Cirl+Shifi+E [LSv1.2 588 Application Data
i 1943 79.182484 192.1 Decode A L5v1.2 571 Client Hello
| 1945 79.120@641 13.22 EeOde RS [Lsv1.2 281 Server Hello, Change
| 1946 79.121157 192.1 Reload Lua Plugins Ctrl+5hift+L Fisy1.2 185 Change Cipher Spec,
i 1947 79.121267 192.1 R LSvl.2 571 Application Data
i 19568 79.139936 1322 Sc-rp o B . | ARA Annliratinn Nata
E 1965 82.442357 192.1 Fallow r TCP Stream Ctrl+Alt+5Shift+ T
i 1969 82.478672 52.15 ' r
. . : UDP Stream Ctrl+Alt+Shift+ L
E 1974 82.4713216 53.15 Show Packet Bytes... Ctrl+5Shift+ O
i TLS 5t Ctrl+Alt+Shift+5
i 1976 52.472189 192.1 Expert Information eam sl g
| 1977 82.499315 52.15/TZ54TS7 TYZTIEETITTS HTIP Stream Ctrl+Alt+Shift+H
i 1978 82.499642 192.168.1.15 52.157.234.37 HTTP/2 Stream
1
! 1979 32.499657 192.168.1.15 52.157.234.37 QUIC Stream
1 14087 87 DITIARE E3 1E7T 234 27 107 1£8 1 15

A window should appear with any information that can be intercepted and displayed. As can be seen in
figure 12 below, there is no information that can be seen due to the increase in security and encryption
that is used.

9 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

No. Time Source Destination Protocol Length Info
617 3.590319 192.168.1.15 18.209.2081.158 TLSvw1.2 127 Applicaticn Data
618 3.682211 18.2089.201.158 TLSvl, 141 Application Data
619 3.704856 192.155.88.129 M Wireshark - Follow TLS Stream (tcp stream eq 0) - Ethemnet - ml X
728 10.103439 192.168.1.15
814 10.389988 192.168.1.15
821 18.478786 192.155.88.129
822 10.479293 192.168.1.15
823 108.4794206 192.168.1.15
836 18.573698 192.155.88.129
851 11.467022 18.2089.201.158
852 11.467144 192.168.1.15
870 13.590735 192.168.1.15
875 14.304169 18.2089.201.158
912 15.578438 192.155.88.129
945 19.0854170 143.284.194.207
981 23.59131@ 192.168.1.15
984 23.683599 18.2089.281.158
1872 33.590139 192.168.1.15
1878 33.683582 18.2089.201.158
1121 43.598213 192.168.1.15
1122 43.682485 18.2089.201.158
1168 53.591277 192.168.1.15 18.209.201
1169 53.683356 18.2089.2081.158 192.168.1.1
1257 62.714949 192.168.1.15 2084.79.197
1259 62.728649 204.79.197.200 192.168.1.1
1261 & ag 192 168 1 15 a1 70 19
Frame 1979: 1881 bytes on wire (15648 bits), 1881 b
Ethernet II, Src: Micro-St @e:75:c6 (@@:d8:61:@e:75: e
¥ Internet Protocol Version 4, Src: 192.168.1.15, Dst:
@1ee = Version: 4 Entire conversation (0 bytes) Show and save data as | ASCII hd
. 8181 = Header Length: 28 bytes (5) Find: | [Franest
~ Differentiated Services Field: exee (DSCP: (5@, E
0000 00.. = Differentiated Services Codepoint: Filter Out This Stream Print. Save as.. Back Close Help

...... 8@ = Explicit Congestion Notification:

Figure 12: Captured Data

10 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

1.1 ALTERNATIVE TRANSMISSION METHOD — GPG4AWIN EXAMPLE

HTTPS works well for traffic that is being sent through a web browser, but what is you are sending data
over a local network or using another form of transmitting the data to the receiver that may not use the
same security protocols. RSA can be used out with a web browser as well. This method of encryption is
commonly known as public-key encryption. The basis behind public key cryptography is using two ‘keys’,
a private and a public key. One computer can hold the private key to decrypt data, and this computer can
distribute a paired public key to anyone it may choose to allow for data to be encrypted for the paired
private key. To be able to carry out and send files using public key encryption, the following procedure
can be used.

11 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

The first step is to download the Gpg4win software from www.gpg4win.de/index.html. The page that
should appear can be seen below in figure 13.

Gpgdwin - Secure email and file - X +

& C & gpgdwinde

EI2 English | ™ Deutsch

| ‘ About Gpgdwin ‘ Community Support Download |

2020-01-07

] A

= & German press release:
Gpgdwin fiir VS-NfD

— s freigegeben
Gpg4dwin 3.1.11 [—]
— & Gpgdwin 3.1.11 released

Qe B

Details - Change History - Check integrity

Archived News

D;‘EMDE 1) Kiscpana

Gonphan Laings 5t 1 e deskiog

Gpg4win - a secure solution...

for file and email encryption. Gpg4win (GNU Privacy Guard for Windows) is Free Software

and can be installed with just a few mouse clicks

Discover Gpg4win

Leamn what Gpgdwin is and read more about
the features of our solution!

About Gpgdwin »

Getting started

\We help you to use Gpgdwin. Learn the basics
about Gpgdwin and get in the world of
cryptography. The best point to start is with the
illustrative Gpgdwin Compendium

Join the community

Gpgdwin is Free Software. Join the
community! We recommend subscribing to the
Gpgdwin announcement mailing list to be
automatically informed about new releases

d other important Gpgdwi
Go to the Gpgdwin Compendium » and ommerimportant Gpodwin news

Go to the community »

All Downloads About Gpgdwin Community Support Misc
About Gpgdwin ‘Community Support Donate
o 0 Features Contribute to Gpg4win License

System Requiremenis
Documentation
Screenshots

Privacy Policy

- Reporting Bugs Source Code
- Building of Gpgdwin Wiki
- Maintaining Website Development Platform
- Translating Gpg4win Short Study Gpgdwin
Links
Contributors
Legal Notice

Figure 13: Gpg4win Website

Once the installer is downloaded, install the application with the following choices of components,
including the software Kleopatra, this can be seen in figure 14 below.

12 | Page

http://www.gpg4win.de/index.html

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

8 Gpgdwin Setup — >

Choose Components
Choose which features of Gpg<win you want to install,

Chedk the components you want to install and unchedk the companents you don't want to
install. Click Mext to continue.,

Select components to install: GnuPs DES.C.FIFItIDﬂ
Paosition your mouse

Kleopatra over a companent ko
[lcra see jts description,
GpgoL
GPgEX
|:| Browser integration

Space reguired: 100.6MB

Gpgdwin-3.1.11
< Back Mext = Cancel

Figure 14: Setup

To ensure that the program has installed successfully. Opening command prompt and typing the
command ‘gpg --version’ should display the following screen.

13 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Command Prompt

ft Windows

C:\Usersh\jmc

Figure 15: Verifying Install

From here there are two different ways to use the software. There is the command line interface or the
graphical interface. These have both been covered in the following sections.

2.2.3 GUI (Graphical User Interface)

2.2.3.1 Generating Key Pair
The first step in using the graphical interface of gpgdwin is to use the software that was previously
installed, Kleopatra. Running this software, the following screen should appear.

14 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Welcome to Kleopatra 3.1.11-Gpg4win-3.1.11

Kleopatra is a front-end for the crypto software GnuPG.

For most actions you need either a public key (certificate) or your own private key.

*The private key is needed to decrypt or sign.
* The public key can be used by others to verify your identity or encrypt to you.

You can learn more about this on Wikipedia,

a=|
+

MNew kKey Pair

=1
2%

Impaort

Figure 16: Kleopatra Home Screen

Using the ‘New Key Pair’ button, another window will pop up asking for a name and email for the private
key. The entries Johnny’ and ‘johncreee@gmail.com’ were used. This can be seen in the figure below.

Key Pair Creation Wizard

Enter Details

Please enter your personal details below. If you want more control over the parameters, dick on

the Advanced Settings button,

Mame: |Ju:uhnny

| (optional)

EMail; |jD|‘|I'|D'EEE@QI‘I‘|ai|.I:I:II'I'I

| (optional)

Johnny <johncreee @gmail. com =

Advanced Settings...

Figure 17: Entered Details

15 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Selecting advanced options from the same window displays the more detailed options of the key pair
that is to be generated. All values were let untouched apart from the date, unchecking this box allows
the for key pair to be used indefinitely. This can be seen in figure 18 below.

Technical Details
Key Material
(®) Rsa
+R5A
() DsA
+ Elgamal
() ECDSA/EDDSA

+ECDH

Certificate Usage
Signing

Encryption

(™ Advanced Settings - Kleopatra

20483 bits
20483 bits
20483 bits (default)
2048 bits (default)
ed25519

ov25519

Certification

[] authentication

[valid until: | 12/04/2022

Figure 18: Technical Details

Cancel

Clicking ‘OK’, then ‘Next’, then ‘Create’, a window will appear asking for a passphrase. The value of

‘Hacklab123’ was used in this case and can be seen entered into the fields below.

Flease enter the passphrase to
protect your new key

! 551 Passphrase; |uuuuu

'.' | Repeat:

Quality:

et

|

Cancel

Figure 19: Entered Passphrase

16 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

The next screen should indicate that the key pair has been generated successfully. This can be seen
below.

Key Pair Creation Wizard

Key Pair Successfully Created

Your new key pair was created successfully, Please find details on the result and some
suggested next steps below,

Result

Key pair created successfully,
Fingerprint: A15CF133E78533EDEF F4E4/BF 394 /FF3557D&SEE

Mext Steps
Make a Backup Of Your Key Pair...
Send Public Key By EMail. ..

IUpload Public Key To Directory Service...

Figure 20: Successful Creation of Key

2.2.3.2 Exporting Public Key

Now that the key pair has been created, the next step is to export the public key. This can be completed
by clicking on the new key created and then going to the top navigation bar of the software and clicking
the button lapelled ‘Export’. A save window will appear; in this case the file was saved as ‘pubKey.asc’ in
the desktop directory. This can be seen carried out below.

17 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

This PC Desktop

Organise New folder

Wallpaper
Engine

. Filemaker Files

B Jonah Action Ci

File name: | pubKey.asc "

OpenPGP Certificates (*.asc *.gpg *.pgp)

» Hide Folders

Figure 21: Saving Public Key

Opening the file in notepad ++, it can be seen that the file does contain the public key. The contents of
the file can be seen below.

18 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

[pubKey.asc E3

[I % T % S N % T 5 I % T % R % T % I)

L

4

L

1 o LA b=

(V<]

————— BEGIN PGP PUBLIC EEY BLOCK----—-

mOENBFeT Jr3BCACWoRE£EY TV D1 9MetMkHHa3 1peI s iGEM2VV0/ud TPshihCM+ /S
T+L12H/z4+50c0In/ 7TalX3Fhn3 S IwDSVIEREshSbaxTdIc3kEUZv040F JvE INSELE
H4HDycFYSEfREGrhDdtxaBeed sShM1 6 YBEG2 244G rnEnL2MIci ckmheRBwT 1DUuWw2 Y
TANW1YiEbayLOSA+ 1 rW+E/ 7 TncVU/Dec2 52T JERPGIfMSci k1 AT B+ Ywown T 5Y
zdvggESkd4AY1eSsTgImB 7Pzt 0i A0 I MEDIFG/x]1 1 c4 852U nnwaXxWA kD]l 2p5SVYz
GlNkoaX¥21dud SmOWcRP=V4+rAIMYPRzMZ 20z ABERA MGOHEpvaGiue SAR amSokbmiy
ZWV10GAt YWl sLoNvET 6 JAT4EEWE TADgWIQShEPE4A 54Tz TR 805 Hv= 10/ 2VE2 Jvglc
EpMmrw I EAWTLOOgHRgYVOgk ICWIEFgIDAOTeROT KgR AKCED= 1H/ =V 2 Jvi 8/ CAC
43TTWFDORTLEIHETHRZjgmP78YENE]1 /EmPAdHtEt k124 10T pCJatt SATLEPE+RDER
EM2RSUtIv)clQUqUCESBOgqwrmIbZvEcu9ivklwd s 3CGEDUTHY yUDE I Qo NucjDBP
TWwOSFz4LISC3T4+EUKLIRROUY+0Bi zMCrd 3noXON 1 MH+ REe e A E+hvmf T InY o d P+Y
C/eJdJ575ETcHeloa0oW+YanwdlUv+af9aVgy+VEERGl sweZ 1TA+ MeBPRAVEWaH1CS
fiScfoloykoHOMC1U3XGukz2olndUdwoexypRooTMvIOMDjesvEOI S0xn90HEYa P
d+8Wad/BL] Ibo2U%8udYulENBFET Jr8BCACT /Ezaw I P+EFbpwdmVa J gZ BvahEowk
ouJ+vpvRE+0AMHXuHoGPesg I awyVgVeg SR 1+ fNhgfinsAEY SmvN EHWYW 1N 1e L9232
MdaGiShoYBAVEFgLheIn GTsEgSZBaRfMUDze 2GuG S JUSEeN/ iGFSHRShO02ZT /G
abHAdzKE3ocwR11UFETyqhJ3t0SqvmHWvzvY0r3fa) Zmiud0IL1jIDI L/ tBr BNk
bEh2Ie2x0shV399YMWUKIMALAEarHipgUtBmkDqusHN0zM3kCLE 7T R1IB3KED IV e s
JI1YEES328KEZZNLz5rOJrRGo I jDechoHeoNSPJEFTr 1 TMUOR A H w1 M3 fARERRRGT
ATYEGRAETACAWIQShXPEASATzTRA05Hvz1H/ 2VE2 IvgUCEpMmw IRDARKCRD=1H/ =
VE2JvniwE/ 9EWRT lEze fRSKHMGSMS KR 2g4WSWhooH3eM4 3 rE 8 axeYHrAt SheMUBG
hghpFJHdBsrSPERONgdzoGbnZ STaFwI JGScMIvI+ 1w T s FPEHeh 1 OmftpnfeMi]
uglGkwSquidbziazbhRACNT 01T 3nhX=k3J4dj+1nvip/EaCOPGLTSRO1 Y £4V
B4TwOR0a/ jalpdgd Mu3eHykfR1C0OcS]l JCmWWGSHEV2200P] JRitrm/ qle 2FcFM
Ep25rESJPt1Ra28mSHFOSDOFTRByArE 21 f PchDHDmO JEWJ1Ra 1 4Ky UrEvh1hOT 01
m+XkHGha2IBadlxoc0RgcH Tweydg72hai

=FhMn

Figure 22: Public Key

2.2.3.3 Distributing Public Key
The next step is to distribute the public key to another computer to allow for data to be encrypted using
the new computer. This can be done my email or any other method of transferring files. In this case a
USB stick was used to transfer the file from one computer to the other.

2.2.3.4

Importing the Public Key

Note: From here on in section 2.3.1, there is two computers. One will be referenced as desktop computer,
the one with the private key, and the other a laptop which will have the public key.

Once the file has been transferred to the laptop form the desktop computer, running Kleopatra on the
laptop, the same starting screen should be present as previously. The option ‘Import’ should be present.
Using this option and selecting the file that has been transferred over, the following screen should

appear.

19 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

™

In order to mark the certificate as valid (green) it needs to be certified.
Certifying means that you check the Fingerprint.
o Some suggestions to do this are:
A phone call to the person.
Using a business card.

Confirming it on a trusted website.

Do you wish to start this process now?

[] Do not ask again

" Yes 1=1 No

Figure 23: Create New Key Prompt

Selecting ‘Yes’, allows for the creation of a key pair on the laptop. The same process that was seen
previously on the desktop computer is carried out. The entered details were as followed:

Name: Frank

Email: Frnak@gmail.com

Passphrase: Frank123

Once the local key pair had been created, the option to certify the imported key is shown as can be seen
below in figure 24.

20 | Page

mailto:Frnak@gmail.com

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

vy | Certify Certificate: Johnny - Kleopatra X

Fingerprint: A15C F138 E785 33ED BF74 E47B F394 7HF3 557D 89BE
Only the fingerprint clearly identifies the key and its owner.

Certify with: | [¥4 Frank <Frank@gmail.com> (certified, created: 12/04/2020) v

Johnny <johncreee@gmail.com=

P Advanced

 crn

Figure 24: Certify Key

Selecting ‘Certify’ and then entering the passphrase for the new ‘Frank’ user completes the importation
process.

2.2.3.5 Encrypting a file

To encrypt a file, first a message must be crafted. A simple text file with some text inside will do the trick.
A text file labelled TestMessage.txt was created. To encrypt the created text file, the ‘Sign/Encrypt...’
button at the top navigation bar of the window is selected. This can be seen in figure 25 below.

™

L d [a
Sign/Encrypt... Decryptfverify...

Figure 25: Encrypt Option

After selecting the button, a window will appear to select the file in which you would like to encrypt.
After selecting the created text file, the following window should appear. From here the option to
‘Encrypt for others:’ is selected. Entering the username ‘Johnny’ should give the option to select the user
‘Johnny’ from the drop-down list. This can be seen below.

21 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

™

Sign / Encrypt Files

Prove authenticity (sign)

[] sign as: Frank <Frank@gmail.com> (certified, created: 12/04/2020)
Encrypt
[] Encrypt for me: Frank <Frank@gmail.com> (certified, created: 12/04/2020)

Encrypt for others: Johnny <johncreee@gmail.com> (certified, OpenPGP, created: 12/04/2020) L x| |

| 2% Please enter a name or email address... |

| » Please enter a name or email address... |

[] Encrypt with password. Anyone you share the password with can read the data.

Output

[] Encrypt / Sign each file separately.

ﬂ |C:,-'Users,"jmceI,I’DesktUprestMessage.txt.gpg ﬁ| -

Encrypt Cancel

Figure 26: Encryption Options

Once all the necessary fields have been filled out, continuing the process encrypts the file creating
another file called ‘TestMessage.txt.gpg’.

From here, the ‘TestMessage.txt.gpg’ is sent back to the desktop computer to then be decrypted.

2.2.3.6 Decrypting the file

To decrypt the ‘TestMessage.txt.gpg’ file, selecting the ‘Decrypt/Verify...” button in Kleopatra opens a
window to select the encrypted file. Once selected the file, the passphrase for the ‘Johnny’ user must be
entered. Once the passphrase has been entered, the following window should appear indicating that the
file has been decrypted successfully.

22 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

™ Decrypt/Verify Files - Kleopatra ? x

Output folder: |C:;"I_Jsers,|"jmceh"Deskto|:l a |

All operations completed.

e e

TestMessage. twt.gpg — TestMessage. tet: Decryption succeeded.

Mote: You cannot be sure who encrypted this message as it is not signed.

Save All || Discard

Figure 27: Successful Decryption

Saving the file to the desktop and opening it in Notepad ++, the contents of the original text file can be
seen. The contents can be seen below.

j TestMessage txt - Notepad

File Edit Format View Help
Helln, this a test from the laptop!

Figure 28: Plain Text Message

23 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

2.2.4 CLI (Command Line Interface)

2.2.4.1 Generating Key Pair
The first step in using gpg4win is to generate a private key. This can be done by using the command ‘gpg

--full-generate-key’. This will display the screen as shown below.

Command Prompt - gpg --full-generate-key

Foundation, Inc.

istribute it.

Figure 29: Generate Key

From here, the selection made is ‘1’ for ‘RSA and RSA (default)’. The keysize will then be asked, for
example purposes the default value of 2048 will be used, but a bigger keysize could be used in practice.

This can be seen below.

/ you want:

Figure 30: Type of Key

Then the time to live of the key is asked for, this can be days, weeks, months, years or indefinitely. For
indefinitely ‘0" is entered. This was used in this case. This can be seen below.

24 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

chould be wvali

Figure 31: Keysize

A confirmation message will appear on screen to confirm that the key is to last indefinitely. Typing ‘y’
passes this check. From there, details are required for linking the key. As can be seen in the screenshot
below test details were entered for this example.

oes not

GnuPG needs to construct a user ID to identify y

Johnny

Figure 32: Entered Details

Once the details are correct, entering ‘0’ and pressing enter confirms the details and a window will
appear prompting for the entry of a passphrase. In this case the passphrase ‘Hacklab123’ was used. This
was entered into the window as can be seen below in figure 33.

pinentry-qt — *

Please enter the passphrase to
protect your new key

_| Passphrase: |uuuu" "@“|

Repeat: ||--||---|-| |

Quality: 1002
Cancel

Figure 33: Passphrase

Once completed the following message should appear in the command prompt.

25 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Figure 34: Successful Creation of Key Pair

This indicates that a public and private key have been signed to the created account and where the
certificate has been stored on the local machine.

To ensure that the key has been created successfully, entering the command ‘gpg --list-keys’ will display

the following screen with the list of stored keys that have been generated.

2B671FEFGAA

t Account,

Figure 35: Confirm Key Creation

Navigating to the file path specified in figure 35 above, the revocation certificate can be seen. The file
contents can be seen in appendix A.

The next step is to export the public key to be able to distribute it to other people. This can be done
using the following command: ‘gpg --armor --output “PublicKey.txt” --export “Johhny”. This indicates to
output the public key from the user “Johnny” to the file “PublicKey.txt” in the current directory. The
command can be seen being used in the screenshot below.

--armor --o] X export "Johhny"

Figure 36: Output Public Key

The full contents of the PublicKey.txt file can be found in appendix B.

26 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

2.2.4.2 Sending Public Key and Encrypting Data
Note: From here on in section 2.3.2, there is two computers. One will be referenced as desktop computer,
the one with the private key, and the other a laptop which will have the public key.

Now that a public key has been generated and saved. To then start using it, first the key must be
distributed to who is required to send data to you. In this case, another computer was installed with the
same software using the same method, but with no sets of keys registered.

To import the key onto the laptop, first the PublicKey.txt file was copied over from the Desktop. From
here, typing the command ‘gpg —import “PublicKey.txt”’ imports the public key from the user ‘Johnny’.
This can be seen below in figure 37.

mail.com>"

imported

C:\Users\jmce

Figure 37: Import Public Key

Once the key has been imported, the ‘trust’ attribute of the key needs to be configured. To configure the
program to trust the imported key, the command ‘gpg --edit-key “Johnny” is used. This will open the gpg
edit command prompt. From here typing ‘trust’ then choosing the option ‘5 = | trust ultimately’, the
prompt will then ask If you are sure you would like to trust this key completely. Typing ‘y’ confirms the
edit. The whole process can be seen in figure 38 below.

27 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Figure 38: Editing Trust Configuration

To encrypt a message, first open notepad and type in a message. In this case, the file was saved as
“TestMessage.txt”. Using the command ‘gpg —armor —recipient “Johnny” —output “Message.asc”

28 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

”r

—encrypt “TestMessage.txt
in figure 39 below.

can be used to encrypt the created message file. The command can be seen

Figure 39: Encrypting Message

This will create a file called ‘Message.txt.asc’. This can be seen in the screenshot below.

Messagestxt...

Figure 40: Outputted File

From here, the ‘Message.txt.asc’ file must be transferred over to the desktop computer. In the real
world, this can be done by email or USB stick or any other method of transferring files. Once the file has
been moved over, in the command prompt, using the command ‘gpg --decrypt-files “Message.txt.asc”’,
will decrypt the file. This can be seen in the screenshot below labelled figure 41.

Figure 41: Decrypt File

A password prompt may pop up for the ‘Johnny’ user, in which the password implemented was
‘Hacklab123’. This can be seen below.

29 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

pinentry-qt — *

Please enter the passphrase to unlock the OpenPGP secret key:
“lohnny (Test Account) <johncreee @gmail. com ="
[1 2043-hit R5A key, ID AZD1C364825C0F47,
created 2020-04-01 (main key ID B5E2B671FEFSAARS).

Passphrase: | |

Corcel

Figure 42: Enter Private Key Passphrase

The message file should then be decrypted, and another file should have been generated with the
message inside. This generated file can be seen in figure 43 below.

Message. t...

Message.txt

Figure 43: Decrypted File

Opening the file, it can be seen that the message has been decrypted successfully. The message reads
‘Hello, this is a test from the laptop!”. The file and contents can be seen in the figure below.

|= Message E3
1 Hello, this a test from the laptop!

Figure 44: Plain Text File

30 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

1.2 RSA ENcrypTION

Both HTTPS and Kleopatra uses an asymmetric key structure protocol through SSL/TLS, this is known as
the RSA encryption method. This method of encryption uses a public key to encrypt the data and a
private key to decrypt the data.

To craft the public key, the algorithm uses two prime numbers (p & q), calculates the product of them (n)
and the result is one of two parts of the public key. The second part is calculated by taking an exponent
(e), that is co-prime with (n). This means that (n) and (e) have no common factors. The values (n) and (e)
are used in conjunction with each other to create the public key.

The first step in crafting the private key, the totient of (n) is calculated. This is the product of (p-1) and
(g-1). The next step is to create the key itself; this is done by taking the totient calculated, multiplying it
by two, adding one and dividing it by (e). The value calculated is assigned (d) and is the value for the
private key.

From here, to encrypt the data. The equation ¢ = M°mod n is used. This is where (e) and (n) have
already been calculated for the public key, (M) is the unencrypted message and (c) is the encrypted
message.

To decrypt the message, the equation D = cdmod n is used. This is where (n) and (d) have already been
calculated for the private key, (c) is the encrypted message and (D) is the decrypted message.

Below is a working example of how the mathematics work. To make it easier to follow, smaller numbers
have been used. In practice, larger numbers would be used to make it harder to guess and allow it to be
more secure.

Generating Public Key

Let’s takep =67,9=79
n = pq

n =67 x79

n = 5293

Small exponent e:
Must be coprime with n
Not a factor of n
l1<e<¢(n)
Let’s take:e=7
Generating Private Key

Calculate ¢(n):

31 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

o(m) = p-D@-1
¢(m) = (66) (78)
d(n) = 5148

Calculate Private key d:

d = 2!@n“+1
e
_2(5148)+1
d= 7
10297
d= 7
d = 1471

Encrypting Data with public key
Encrypt the numbers ‘1413’

Calculate Encrypted data:
e
¢ =Mmodn

¢ = 1413 mod 5293

The mod function present in the equation above means that
1413*1413*1413*1413*1413*1413*1413 }

¢ = remainder of{ =203

This can also be calculated using the Extended Euclidean Algorithm

11245923707920225356717 mod 5293

C

¢ = 1350

Decrypt the data

So far, we have c being the encrypted data, d being the primary key and n being the public key.

Calculate D the Decrypted data:

D = cdmodn

D =1350""""mod 5293

D = 1413

D = 1413, The decrypted message.

32 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

M = 1413, The starting unencrypted message.

1.3 STORING DATA SECURELY

Not only is transmitting data important but storing data is one of the most important parts of data
security. This is due to the data being sat in one place, this makes it a target for malicious attackers as
they have one point to attack rather than trying to grab the data in transit. If a website was using HTTPS
to securely transmit data to and from the webserver, what happens if sensitive information is needing to
be stored on the webserver? Like a password for a login portal for example. One of the most common
pieces of data that is targeted is passwords, this is due to the information and accounts that could be
accessed using these passwords. To try and store passwords safely and securely, hashing algorithms were
developed to obscure the representation of the password. There are many different hashing algorithms
available in the present day. In this paper, the following hashing algorithms will be discussed: MD5
(Message-Digest 5), the SHA (Secure Hashing Algorithm) family including SHA-224, SHA-256, SHA-384,
SHA-512. Each one of these hashing algorithms can hash sensitive information and appear to obscure
the data, however some of the algorithms are more secure than others.

The MD5 hashing algorithm was first implemented in 1991 by Ronald Rivest. When released, the hashing
algorithm was widely used for data security. Although now in the present day, the algorithm is found to
be unfit for securing data. This is due to MD5 being a fast algorithm to use and run. MD5 produces a
hash that is 128-bits in size, this is a relatively small hash when compared to other algorithms.

The SHA family of hashing algorithms have been in development for many years. The family consists of
SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512. The first four of these from SHA-O to SHA-256 work
on a 512-bit message segment divided into 32-bit words and the last two working on a 1024-bit message
segment divided into 64-bit words. Each of the algorithms produce a different length of output. SHA-1,
which replaced SHA-O, produces an output of length 160 bits. SHA-224 produces a 224-bit output,
SHA-256 a 256-bit output, SHA-384 a 384-bit output and SHA-512 a 512-bit output.

Taking into consideration the above hashing algorithms. Looking at the hash of a simple string can give
the idea of a level of security they provide. Listed below is the hashing algorithms with the simple string
‘Hello’ being hashed.

MDS5 - 8b1a9953c4611296a827abf8c47804d7

SHA-1 — f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0

SHA-224 - 4149da18aa8bfc2b1e382c6c26556d01a92c261b6436dad5e3be3fcc

SHA-256 - 185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969
SHA-384 —

3519fe5ad2c596efe3e276a6f351b8fc0b03db861782490d45f7598ebd0ab5fd5520ed102f38c4a5ec834e9
8668035fc

SHA-512 -

33 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

3615f80c9d293ed7402687f94b22d58e529b8cc7916f8fac7fddf7fbd5af4cf777d3d795a7a00al6bf7e7f3fb
9561ee9baae480da9fe7a18769e71886b03f315

Previously in CMP202 Data Structures and Algorithms 2 in 2™ year Ethical Hacking, | implemented a
multi-threaded password cracker as my coursework. This worked by using one CPU (Central Processing
Unit) thread as a dictionary attack where a word list file was read from and each word was placed
through the specified hashing algorithm from the choice of MD5 or SHA256. The other threads use a
brute force method by attempting all possibilities for each number of characters up to the maximum
number of threads the CPU has. E.g. First thread tries all 1-character passwords, second thread tries
2-character passwords and so on.

During the development of this paper however, the algorithm has had multiple improvements and
changes made to it. First, more hashing options were added. The algorithm now includes the following
hashing algorithms: MD5, SHA224, SHA 256, SHA384, SHA512. The mathematical files to be able to hash
values were taken from (Code for Monkeys - C++, PHP, CSS, Programming Resource :: zedwood.com,
2020). This allows for a wider range of hashes to be cracked using this algorithm. The program has the
option to run using just one hashing algorithm to try and crack the inputted hash, or to run using all the
hashing algorithms at the same time to try and crack the inputted hash. This allows for a more functional
and modular program. The full source code for the password cracker can be seen in appendix C.

To demonstrate which hashing algorithm is more secure than the other, a selection of
phrases/passwords were chosen to be attempted to be cracked. These included: ‘password’, ‘gwerty’,
‘h4ck. These phrases were tested in the password cracker with MD5, SHA-224, SHA-256, SHA-384 and
SHA-512 hashes being tested. The inputted hashes can be seen below:

MD5:
password - 5f4dcc3b5aa765d61d8327deb882cf99
gwerty — d8578edf8458ce06fbc5bb76a58c5cad

h4ck — 0ed5f1f056b1d96122afaae306d3dd65

SHA-224:
password — d63dc919e201d7bc4c825630d2cf25fdc93d4b2f0d46706d29038d01
gwerty — 5154aaa49392fb275ce7e12a7d3e00901cf9cf3ab10491673f97322f

h4ck — 906022a0f5bff263c5b9cfaalla6c9270a456d2c7b30e6b50a0a25¢cc

SHA-256:
password - 5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62al11ef721d1542d8
gwerty — 65e84be33532fb784c48129675f9eff3a682b27168c0ea744b2cf58ee02337c5

h4ck — caf33ed88e8d64d24f58a675f8dab491cd91eeclc2cde5fbeb0773cec2d1fb63

34 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

SHA-384.
password —

a8b64babd0aca91a59bdbb7761b421d4f2bb38280d3a75bal0f21f2bebc45583d446c598660c94ce680c47
d19c30783a7

gwerty —

1ab60e110d41a9aac5e30d086c490819bfe3461b38c76b9602fe9686aa0aa3d28c63c96a1019e3788c40al
4f4292e50f

h4ck -
ad6851ee3f95d51d3b818c8c34d1cc862fa5180c41a3876ad52acl11f76c7d9bb9efc751583555e6cf9d950e
11d7fad79

SHA-512:
password —

b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394c706a8bb980b1d7785e5976ec049b
46df5f1326af5a2eab6d103fd07c95385ffab0cacbc86

qwerty —

0dd3e512642c97ca3f747f9a76e374fbda73f9292823c0313be9d78add7cdd8f72235af0c553dd26797e78e
1854edee0ae002f8aba074b066dfcelafl14e32f8

hdck —

4d99f965b71a0de9bcB8alc5b9e153291e7aede241d8487662c7527429c8537842138280fb9f1262cc56d73
e6d27b20ad4a5b39af1af5c807522bb3d56a7b7856e

Using the password cracker algorithm that had been implemented along with these hashes will give an
indication on the amount of time that requires to crack each hash through brute force and dictionary
attacks. The dictionary attack was carried out using a wordlist from online (danielmiessler/SeclLists,
2020). This has 10,000 common passwords that can be hashed and compared to the input hash, this file
was saved and renamed to ‘Wordlist.txt’ in the same directory as the password cracker program.

To be able to carry out the comparison, the program must be used to crack each of these hashes using
individual hashing algorithms. Below are the steps taken to carry out one of these actions.

When first running the program, the program will ask if the user would like to attempt to crack a hash, or
to hash a string. Entering ‘2’ to crack a hash is used.

35 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Il C:\Users\jmcel\Desktop\Password Cracker\Release\Password Cracker.exe

Would you like to:
1: Hash an input?

2: Attempt to crack a hash?

Figure 45: Function Selection

From here, the options that follow allow the user to either compare that entered hash to all possible
hash types this program supports or to compare against a certain type of hashing algorithm. Since in this
case it is to determine which singular hashing algorithm is better than the other, ‘2’ is entered.

lould you like to attempt to crack:
1: All Hashes supported
Certain Hash

Figure 46: Hash Function Selection

Displayed is a list of the hashing algorithms that can be tested listed from 2-6. In this case MD5 is being
used, entering ‘2’ allows for the use of testing against MD5 hashes.

Please enter the type of hash you are wanting to crack

WO LM P L R

Figure 47: Hash Selection

The next step is to input the hash that is wanting to be cracked, this can be seen below with the hash of
the phrase ‘password’ being entered.

ter the hash you would like to crack:

» Sfddcc3bSaa765d61ds8

Figure 48: Enter Hash

Next is to input the filename of a wordlist file for the dictionary attack. In this case the file that was
downloaded and being used is the ‘Wordlist.txt’ file. This can be seen entered in the screenshot below.

36 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Please enter the filename with the correct extension for the dictionary attack:

»» Wordlist.txt

Figure 49: Enter Dictionary File

The next option is to display all attempted passwords. Selecting yes at this stage would dramatically
increase the time taken to crack any hashed phrase. So to give more accurate sense of which algorithm is
faster, no is selected. This is carried out by entering ‘0’ at this stage.

Would you like to view all attempted password? (1 for Yes or & for No)
Please note this will increase the time taken to crack the password drastically
>> B

Figure 50: View Attempted Passwords

The program will then ask the user if they would like to specify the number of CPU threads to use. To
make it fair for all tests, the option to detect the maximum number of threads on the computer and use
them will be selected. This can be carried out by entering ‘2’ as seen below in figure 51.

Please select from the following:
1: Specify number of threads
2: Detect Maximum threads

Figure 51: Select Threads

Hitting enter after this prompt will start the password cracking. Seen below is the output format of the
program with the entered hash, the cracked password, the number of attempts it took to crack the
password, the number of milliseconds it took to crack, the hashing algorithm that was used and the type
of attack the password was found using.

Initialisi

the password
ms. It was the MD5 hash method. It was found using the Dictionary a

Figure 52: Output

37 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

The full procedural output of the steps carried out above can be seen in figure 53 below.

h an input?
tempt to ¢ k a hash?

you like to attempt to cr
1 Hashes supported
tain Hash

the hash
B

~ the filename with the correct extension for the di
xt

/ number of threads
(imum threads

of attempts to crack the password:
the p ¢ 5. It was f ng the Dictiona
ntinue .

Figure 53: Full Procedure

These steps are repeated 5 times for each of the hashes listed above for each hashing algorithm. The
results of the carried-out procedure can be seen below. These numbers are relative to the machine they
are running on as the CPU speed and core/thread count is an essential aspect to the program running.
The following results were carried out on an Intel Core i5 9600k, 6 Core 6 Thread CPU, overclocked to 4.8
GHz on all cores, with 32GB of 2666MHz DDR4 RAM. The results have been split into two separate
tables, one of which records the average time that is taken to crack each hash, and one with the average
number of attempts it takes to crack each hash.

38 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

MD5 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 8 9 10 9 8 8.8
gwerty 10 9 8 9 8 8.8
h4ck 13486 13514 13494 13596 13582 13534.4
SHA-224 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 9 10 10 8 8 9
qwerty 8 10 8 9 9 8.8
h4ck 25637 25728 25543 25677 25574 25631.8
SHA-256 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 8 8 10 10 10 9.2
gwerty 11 9 10 10 11 10.2
h4ck 28535 28738 28673 29715 29580 29048.2
SHA-384 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 8 9 9 10 11 9.4
gwerty 10 8 11 9 8 9.2
h4ck 43302 41663 41997 41515 41545 42004.4
SHA-512 Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
password 11 12 11 9 9 10.4
gwerty 11 8 9 9 10 9.4
h4ck 54320 55396 52433 53170 56286 54321

Figure 54: Average Time Taken

39 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Number Number Number
MD5 Number 1 2 Number 3 4 5 Average Attempts
password 330 266 643 449 491 435.8
qwerty 967 598 275 296 341 495.4
h4ck 6178847 6190666 6193037 6186701 | 6177655 6185381.2
SHA-224 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts
password 457 291 1018 704 152 524.4
gwerty 136 622 166 338 489 350.2
h4ck 6130058 6115808 6112918 6107792 | 6118382 6116991.6
SHA-256 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts
password 132 148 198 395 208 216.2
qwerty 416 216 459 515 503 421.8
h4ck 5681083 5762855 5769557 5932745 | 5967011 5822650.2
SHA-384 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts
password 149 132 150 168 536 227
qwerty 260 92 505 89 94 208
h4ck 5692543 5413609 5393001 5403932 | 5409344 5462485.8
SHA-512 Time 1 Time 2 Time 3 Time 4 Time 5 Average Attempts
password 484 785 647 445 335 539.2
gwerty 481 180 351 229 413 330.8
h4ck 5424822 5436279 5375960 5446452 | 5451421 5426986.8

Figure 55: Average Attempts Taken

Taking the above results and plotting graphs from them shows the trend with each hashing algorithm.
Looking at figure 56 and 57, it can be seen that the number of attempts to be able to crack the password
drastically decreases with the complexity of the algorithm, with the number of attempted passwords for
MD5 being over 6 million in the space of 13 seconds and SHA-512 having 5.4million attempts in the
space of 54 seconds. This is due to the drastic increase in time that it takes for one hash to be calculated
for a more complex algorithm such as SHA-512, meaning that less attempts can be made in the same
length of time for an easier algorithm to run.

40 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

6400000
6200000
6000000
5800000
5600000
5400000

5200000

w
&
=
£
<
5
]
7]
=
B
-1
_=
]
&
o
]
Lo

5000000 _—
SHA-224 SHA-256

Hashing Algorithm

B Mumber of attempts Linear{NMumber of attermpts)

Figure 56: Number of Attempts again Hashing Algorithm

'h4ck’ Hash

60000

50000

40000 =
30000

Average Time (ms)

10000 -

MD5 L 224 SHA-256 SHA-384
Hashing Algorithm

Linean{undefined]

Figure 57: Time Taken for Each Hashing Algorithm

As can be seen from the gathered results, the SHA family of hashes, from the ones tested above, require
a much longer time to be able to crack the same password used in all hashing algorithms. This means
that there is a much lower number of passwords being attempted per second. MD5 can be seen to have
many more attempts in a shorter time than SHA-256 and above algorithms. From the results, when
attempting to crack a MD5 hash, the program attempts around 450,000 hashes per second, whereas
SHA-256 attempts around 200,000 hashes and SHA-512 attempting around 100,000 per second. A lower

41 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

number of hashes attempted per second means that it would take a much longer time to be able to
crack any hash.

Along with the high number of hashes that can be tested per second, another reason as to why MD5
being considered insecure for use is that as it has been out for a long time, there are large dictionary
tables with cracked hashes in them showing the passwords in plain text. An example of an online
dictionary is MD50nline (https://www.md5online.org/), they have over 1,150 billion cracked passwords
using MD5 hashes, this means that 1,150 billion passwords have been cracked and are available to be
checked online at any time. MD5 is also known to have hash collisions, this is where different data, when
hashed, has the same hashed value as each other. In terms of a webserver and passwords in a database,
this might mean that a different password could be used instead of the actual password, as they turn out
to have the same hash value. This in turn indicates that the SHA family are a much more suitable hashing
algorithm for securing sensitive data. SHA-512 is the most secure hashing algorithm out of the collection
tested.

The implemented password cracker program allows for any inputted string to be hashed using one of the
listed algorithms in the program. This can allow the user to keep their information secure by hashing any
data that could be considered sensitive. The simple process of using the password cracker program to
hash the entered value of “Hacklab” and return the hash:
“b7ec19d91682d9114dbfd3c30cch60ec69684d5dea7ddeedf2def444ac334b8f44fd970b31229d195bdd8
38611a9b608abf587c¢1d48798e32ael7c0be5c7bede” can be seen below in figure 58.

dsdea7ddeedf2def444ac334b81441d970

Figure 58: Hashing a value

42 | Page

https://www.md5online.org/

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

3 Discussion

3.1 GeneraL Discussion

All sensitive data in the modern day must be secured to prevent from malicious attackers gaining access
to any sensitive information that may be transferred over a network or being stored on a computer and
or database. This can be carried out using the methods discussed in this paper, using RSA through HTTPS
or Kleopatra to transfer data and using hashing algorithms to store data securely. Without securing data
properly, information can be captured and cracked by attackers with a malicious intent. Be this over a
network or through a database, every aspect of the data transport life must be taken into consideration,
without this user’s information would be at risk.

Not hashing passwords with a suitable hashing algorithm can have a devastating effect. If a password
database was to use the MD5 hashing algorithm as standard, if exploited and leaked. The passwords
could easily be cracked in a very short time when compared to other algorithms. Using algorithms such
as Sha-256, SHA-384, SHA-512 should be the standard in the modern day. These algorithms take more
time to run which means that less attempts can be made per second at cracking the hash. These
algorithms also do not currently have the large databases of already cracked hashes available like MD5
does. This in turn allows for a much more secure method in storing passwords.

3.2 COUNTERMEASURES

When trusting a website for using SSL/TLS encryption, it is possible to gain a fake SSL certificate. This
means that it may appear that the network traffic is going to be sent encrypted and securely, this would
however not be the case as the webserver would not actually have the encryption activated, it would
just appear as it did. In conjunction with this, it is possible to have a fake ‘padlock’ at in the URL bar of a
website. Again, this appears to be genuine but can trick the user into thinking that their traffic will be
secure when being transmitted.

One of the possible countermeasures to the hashing algorithms discussed above has already been
presented and tested in section 2.5 above. Password crackers can be used to brute force and/or
dictionary attack any found hashes. Depending on the hardware used to run the password crackers,
hundreds of thousands of passwords can be attempted per second to try and crack these passwords.

3.3 CONCLUSIONS

In conclusion to this paper, all sensitive data being sent or stored should be handled correctly and either
be encrypted, hashed or obscured in a way that makes it very difficult for the attacker as can be seen
using HTTP in the modern day to send data between points is not a secure way of transmitting data.
HTTPS should always be used over HTTP when necessary. If unable to use HTTPS, then another
encryption method such as Kleopatra should be used as a secure method in transferring data. Both of
these methods use RSA encryption and are considered a secure way of transmitting data.

43 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

In conclusion to the gathered results from the password cracker, it can be seen that SHA-512 is the most
secure hashing algorithm tested above, however it may be more suitable for smaller businesses that may
not have the required computing power to use SHA-256 instead of SHA-512 as it takes longer to hash.
SHA-256 is still considered a secure hashing algorithm but with more secure options available,
consideration into what is being stored must be taken. MD5 should not be used to store any sensitive
information as it is no longer considered secure due to the many vulnerabilities found in the algorithm.

3.4 Future WOoRK

If more time was available, more research would be put into the mathematics and equations behind the
different hashing algorithms such as MD5 and the SHA family of algorithms. This would allow for a
further insight into the differences in mathematics between the algorithms and why one would be
considered more complex and secure that the other.

More research could be carried out to find other methods of sending data securely over a network. This
could include other types of encryption methods such as AES (Advanced Encryption Standard) or
TripleDES (Triple Data Encryption Standard). Demonstrations of these methods along with explanations
of the mathematics behind these methods could be researched and demonstrated to allow for a fuller
understanding and comparison between each method.

Methods in which to try and break these types of encryption methods could be researched into and
possibly demonstrated to indicate how strong each method is for securing data. Tools could possibly be
developed like the password cracker used in this paper.

44 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

REFERENCES

For URLs, Blogs:

Store.hp.com. (2020). What Are the Different Types of Encryption? | HP® Tech Takes. [online] Available at:
https://store.hp.com/us/en/tech-takes/what-are-different-types-of-encryption [Accessed 2 Mar. 2020].

Anon, (2020). [online] Available at: https://www.cloudflare.com/learning/ssl/what-is-https/ [Accessed 2 Mar.
2020].

Md5online.org. 2020. 3 Reasons Why MD5 Is Not Secure | Md5online. [online] Available at:
https://www.md5online.org/blog/why-md5-is-not-safe/ [Accessed 31 March 2020].

En.wikipedia.org. 2020. MD5. [online] Available at: https://en.wikipedia.org/wiki/MD5 [Accessed 31 March 2020].

En.wikipedia.org. 2020. SHA-2. [online] Available at: https://en.wikipedia.org/wiki/SHA-2 [Accessed 31 March
2020].

KeyCDN. 2020. What Is The Difference Between HTTP And HTTPS? - Keycdn. [online] Available at:
https://www.keycdn.com/blog/difference-between-http-and-https [Accessed 31 March 2020].

Hashed Out by The SSL Store™. 2020. What Is The Difference Between SHA-1, SHA-2 And SHA-2567. [online]
Available at: https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/ [Accessed 31
March 2020].

Medium. 2020 Why An Unsalted MD5 Hash Is Bad Practice. [onllne] Available at:
-practice-6a0d7d017856 [Accessed 31 March

Vocell, J., 2020. A Beginner's Guide To SSL: What It Is & Why It Makes Your Website More Secure. [online]
Blog.hubspot.com. Available at: https://blog.hubspot.com/marketing/what-is-ss| [Accessed 1 April 2020].

Streetdirectory.com. 2020. What Is The Strongest Hash Algorithm?. [online] Available at:
https://www.streetdirectory.com/etoday/what-is-the-strongest-hash-algorithm-ejcluw.html [Accessed 27 April
2020].

2020. [online] Available at: https://www.cloudflare.com/learning/ssl/what-is-https/ [Accessed 27 April 2020].

Robert Heaton. 2020. How Does HTTPS Actually Work? | Robert Heaton. [online] Available at:
https://robertheaton.com/2014/03/27/how-does-https-actually-work/ [Accessed 27 April 2020].

SearchSecurity. 2020. Secure Data Transmission Methods. [online] Available at:
https://searchsecurity.techtarget.com/tip/Secure-data-transmission-methods [Accessed 27 April 2020].

Schneider Electric Blog. 2020. Transporting Data Securely - Schneider Electric Blog. [online] Available at:
https://blog.se.com/industrial-software/2015/04/21/transporting-data-securely/ [Accessed 27 April 2020].

Md5online.org. 2020. 3 Reasons Why MD5 Is Not Secure — Md5online. [online] Available at:
https://www.md5online.org/blog/why-md5-is-not-safe/ [Accessed 28 April 2020].

Namecheap.com. 2020. What Is An RSA Key Used For? - SSL Certificates - Namecheap.Com. [online] Available at:
https://www.namecheap.com/support/knowledgebase/article.aspx/798/67/what-is-an-rsa-key-used-for [Accessed
28 April 2020].

45 | Page

https://store.hp.com/us/en/tech-takes/what-are-different-types-of-encryption
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.md5online.org/blog/why-md5-is-not-safe/
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-2
https://www.keycdn.com/blog/difference-between-http-and-https
https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/
https://medium.com/@svanas/why-an-unsalted-md5-hash-is-bad-practice-6a0d7d017856
https://blog.hubspot.com/marketing/what-is-ssl
https://www.streetdirectory.com/etoday/what-is-the-strongest-hash-algorithm-ejcluw.html
https://www.cloudflare.com/learning/ssl/what-is-https/
https://robertheaton.com/2014/03/27/how-does-https-actually-work/
https://searchsecurity.techtarget.com/tip/Secure-data-transmission-methods
https://blog.se.com/industrial-software/2015/04/21/transporting-data-securely/
https://www.md5online.org/blog/why-md5-is-not-safe/
https://www.namecheap.com/support/knowledgebase/article.aspx/798/67/what-is-an-rsa-key-used-for

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Digicert.com. 2020. All About SSL Cryptography | Digicert.Com. [online] Available at:
https://www.digicert.com/ssl-cryptography.htm [Accessed 28 April 2020].

Difference between SHA 512, S., Mohan, V. and Ossifrage, S., 2020. Difference Between SHA 512, SHA 512 Half, SHA
256. [onllne] Cryptography Stack Exchange Avallable at:

29 Apr|I 2020].

integrity, S., S., D., Climent, M. and Rock, G., 2020. SHA-256 Or MD5 For File Integrity. [online] Stack Overflow.
Available at: https://stackoverflow.com/questions/14139727/sha-256-or-md5-for-file-integrity [Accessed 29 April
2020].

Maria, G., 2020. 4 Common Encryption Methods And Use Cases. [online] GetApp Lab. Available at:
https://lab.getapp.com/common-encryption-methods/ [Accessed 29 April 2020].

2020. [online] Available at: hitps://www.cloudflare.com/learnin l/why-is-http-not- re/ [Accessed 1
May 2020].

SelfKey. 2020. All Data Breaches In 2019 & 2020 - An Alarming Timeline - Selfkey. [online] Available at:
https://selfkey.org/data-breaches-in-2019/ [Accessed 1 May 2020].

Greenberg, A., 2020. Hackers Are Passing Around A Megaleak Of 2.2 Billion Records. [online] Wired.
Available at: https://www.wired.com/story/collection-leak-usernames-passwords-billions/ [Accessed 1 May
2020].

Mathematical files for Password Cracker: Zedwood.com. 2020. Code For Monkeys - C++, PHP, CSS,
Programming Resource :: Zedwood.Com. [online] Available at: http://www.zedwood.com/ [Accessed 30
April 2020].

Dictionary file: GitHub. 2020. Danielmiessler/Seclists. [online] Available at:
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-passw

ord-list-top-10000.txt [Accessed 30 April 2020].

46 | Page

https://www.digicert.com/ssl-cryptography.htm
https://crypto.stackexchange.com/questions/55658/difference-between-sha-512-sha-512-half-sha-256
https://stackoverflow.com/questions/14139727/sha-256-or-md5-for-file-integrity
https://lab.getapp.com/common-encryption-methods/
https://www.cloudflare.com/learning/ssl/why-is-http-not-secure/
https://selfkey.org/data-breaches-in-2019/
https://www.wired.com/story/collection-leak-usernames-passwords-billions/
http://www.zedwood.com/
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-10000.txt
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-10000.txt

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

APPENDICES

APPENDIX A — OPENPGP CERTIFICATE

This is a revocation certificate for the OpenPGP key:

pub rsa2048 2020-03-31 [S]
11221E6CD14332A558C0331490B6F1F5066EFBA3

uid Johhny (Test Account) <johncreee@gmail.com>

A revocation certificate is a kind of "kill switch" to publicly
declare that a key shall not anymore be used. It is not possible

to retract such a revocation certificate once it has been published.

Use it to revoke this key in case of a compromise or loss of
the secret key. However, if the secret key is still accessible,

it is better to generate a new revocation certificate and give

a reason for the revocation. For details see the description of

of the gpg command "--generate-revocation" in the GnuPG manual.

To avoid an accidental use of this file, a colon has been inserted

before the 5 dashes below. Remove this colon with a text editor

before importing and publishing this revocation certificate.

Comment: This is a revocation certificate

iQE2BCABCAAgGFIEEESIebNFDMqVYwDMUkLbx9QZu+6MFAI6DdasCHQAACgkQkLbx

47 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

9QZu+6PHzwf/VmS34ctOwpl)JcABpyKdWE3POTmwIURGqsw1ttYzT6bwtbBriWcjl
gm6fLKrHrZTDe826kCHKrjRWwgPwqssZDBktyEP50vHiBsgBjlVhMA2/uXW2gvom
RryiBXGgaCihPTm5SKfIxY6QEb/hgX3065mKGG29sGlLswPjgmNcnLVnRnrjkVAm
Hz+9YJf5KriNmZEJnLHqv8mIT506024KpvHBpk/pX6FAUXpU43K3ngNi+NQD4AHAH
x22tYQhWIJRIs7CUjNa5/XopTkm4MLh4++9t1iKVE2aPX9wXAI7A5rEh+PgTO8DKI
J4rWulRebebGLdL8u38WIXHh2820d0LzNA==

=jMNU

MQENBF6DdYgBCACON7AC719PcazIIMfLZi4U0ThlcO7ke/FpHkvPsM/Faoab7CIS
Xuv66DZGGN/Axyk92CYrIBBqwHQHS0aPSMSqli2CwEke/C3ne2YybPGe3p7s4Fjp
AI2wDCtEtr6PoztmA8P9BTuzw/4mV15XQRkSbWalZX8403a0n2NXXqTLxudr5sSa
AealgXd0lcxXDINX+Rs0l4udfWYJpmDn8E3J5NVfeqPudsqLOgWNWBQLCxolsh/L
8502xKXyhdmzBIv8DJ4rAY705vHSHHTOLUZCFeNnA6bc+CriRTWSOMmaxWG6KRcq
xalLrkoa30ZHkeQZzEOg2+gCNV6/5Ui5m9PqHABEBAAGOKOpvaGhueSAoVGVzdCBB
Y2NvdW50KSA8am9obmNyZWVIQGdtYWIsLmNvbT6JAU4EEWEIADgWIQQRIh5s0UMy
pVjAMxSQtvH1Bm770wUCXoN1iAlbAwULCQgHAgYVCgkICwIEFgIDAQIeAQIXgAAK
CRCQtvH1BmM7703bmCACenGKUNngbjUIBezjSIC7ZEEyUxiFKeDKxsgLLSpQAK3wVi
UOP19R1hhY2jDs79hFRNvZYTk2+scZtk3s9VawlMC69kuf5ZFtVRUoEMz9t+cOsk
+QsSP3GWfeQ95qPqjNX124y1A0lyNh923bzgFvfQhRB19py6YOGz0648k+Gig/W1
PKIM5pcHY7ehOogIN+zDUraHYNGI+kvA1X+UeaC3TRgevwGtSFmo6eWJkvuKobz)
96DML+8983YTAdXgLU6gSs3L91aklJcOiHAC7il7721kEIR937LIjQz8F/ulRkBx
4a/uY4QWBE4ejulHXdNoPtG3AE/BOTiMy8+hFBIWUQENBF6DdYgBCAC7Eur2vbmG
WyuaoYN5DsukGxIIXM61j751tN1b5QUbHula7+8SMtrofHNvyNEgxkv/a76R+ucq

zLRJZcLASGbEnnhmNei+fgb8RTLNkpyysNtD9iejQAEzU7Dn1/fjnX4r)3P0iZr/

48 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

MBj/42KxIX20Awgwa30jeBYD0OaQSo02ixVZTT513SdJLImmVIh6J1PUJgI9)QzF30
OTKHAYRogUOPH®6j/ra+zcjcHGGxvkDO3XMmBJugqghK4FTbMO310gWLKHdDx+ivqv
6mDh0OfBUxqoEhy4Dkt+pDWnOHGkDoRamAb1OWfOqPgN5U9pdpTTdiblUoNFvjOks
Cv8pARuwSaQXABEBAAGJATYEGAEIACAWIQQRIh5s0UMypVjAMxSQtvH1Bm77owUC
XoN1iAIbDAAKCRCQtvH1Bm7703sICACgaaDTcTEleE2M6a3xn1F+vCCUZEZgDETo
LFel/rm+Zhgp4mRFr7Y0p1Y6B+I906wNzDFU0ZOx/avxojEyA7qbkCKE/6p6hQ2B
ObEFLscOtWOo0Ab5k2iA5TgztMs4VCDihFtX+PQw3fAralDZL988kp/y3wIpEnG75
KDwCHH4FeLiYdhnokFYFB7EKFCAmWZIzLW6s2QKmiXSeN9I9f1AISXCfz2ZUqTbs
MnRtDb1+GN4V2ShbvPEbVSFZKE14vC7BVXqMzEZSgXwLUUss+nKPFxDCBIKd3Qiy
3x6CpABCYTbshRNgPHxH48d0rhEDkxgLzS7mE/RroY+kGjbg+m+/

=zuC4

49 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

APPENDIX C — MuLTI-THREADED PASSWORD CRACKER

Source.cpp

std;

std::chrono::duration_cast;
std::chrono::milliseconds;

std::chrono::steady_clock the clock;

mutex hash_mutex;

mutex cout_mutex;

condition_variable counter_cv;
mutex counter_mutex;
counter_bool;

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

string FoundPassword;

counter =0;

string method;

string hashMethod;

LowerCaseletters[26] =

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

DictionaryAttack(string filename, string inputHash, int hashChoice, int display) {

string contents;

ifstream file(filename, ios_base::binary);

('file.good()) {
cout <<
system(

(file >> contents && !done) {

counter_bool = ;
counter_cv.notify_one();

(display == 1) {
cout_mutex.lock();
cout << contents << endl;
cout_mutex.unlock();

string hash =

(hashChoice == 1 | | hashChoice == 2) {

hash_mutex.lock();
hash = md5(contents);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod =
cout << endl << << hash << endl;
cout_mutex.lock();

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

done = ;
FoundPassword = contents;
method = ;
cout_mutex.unlock();

(hashChoice == 1 | | hashChoice == 3) {

hash_mutex.lock();
hash = sha224(contents);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod = ;
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = contents;
method = ;
cout_mutex.unlock();

(hashChoice == 1 | | hashChoice == 4) {

hash_mutex.lock();
hash = sha256(contents);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod = ;
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = contents;
method = ;
cout_mutex.unlock();

(hashChoice == 1 | | hashChoice == 5) {

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

hash_mutex.lock();
hash = sha384(contents);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod = ;
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = contents;
method = ;
cout_mutex.unlock();

(hashChoice == 1 | | hashChoice == 6) {

hash_mutex.lock();
hash = sha512(contents);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod = ;
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = contents;
method = ;
cout_mutex.unlock();

}

file.close();

’

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

BruteForce(int stringlength, string s, string inputHash, int hashChoice, int display) {

(done)

string pwordattempt;

(stringlength == 0)
{

counter_bool = ;
counter_cv.notify_one();

(display == 1) {
cout_mutex.lock();
cout << s << endl;
cout_mutex.unlock();

string hash ="";
(hashChoice == 1 | | hashChoice ==

hash_mutex.lock();
hash = md5(s);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod =
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = s;
method =
cout_mutex.unlock();

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

(hashChoice == 1 | | hashChoice == 3) {

hash_mutex.lock();
hash = sha224(s);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod = ;
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = s;
method =
cout_mutex.unlock();

(hashChoice == 1 | | hashChoice == 4) {

hash_mutex.lock();
hash = sha256(s);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod = ;
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = s;
method =
cout_mutex.unlock();

(hashChoice == 1 | | hashChoice == 5) {

hash_mutex.lock();
hash = sha384(s);
hash_mutex.unlock();

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

(hash == inputHash) {
hashMethod = ;
cout << endl << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = s;
method =
cout_mutex.unlock();

(hashChoice == 1 | | hashChoice == 6) {

hash_mutex.lock();
hash = sha512(s);
hash_mutex.unlock();

(hash == inputHash) {
hashMethod = ;
cout << end| << << hash << endl;
cout_mutex.lock();
done = ;
FoundPassword = s;
method =
cout_mutex.unlock();

&& !done; i++)

pwordattempt = s + LowerCaseletters|i];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

;] <26 && !done; j++) {
pwordattempt = s + Capitaletters[j];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Xx=0;x< 22 && !done; x++) {
pwordattempt = s + Symbols[x];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

y=0;y<10 && !done; y++) {
pwordattempt = s + Numbers[y];
BruteForce(stringlength - 1, pwordattempt, inputHash, hashChoice, display);

validatelnt(int min, int max, int choice) {
(choice < min || choice > max) {
cout << << endl;
cout << << endl <<
cin >> choice;
cout << endl;

choice;

ReceiveChoicelnput() {
choice;
cout << << endl << << endl <<
<< endl <<
cin >> choice;
cout << endl;
validatelnt(1, 2, choice);
(choice == 2) {
cout << << endl <<
<< endl << << endl << << endl << << endl <<
endl <<
cin >> choice;
cout << endl;
validatelnt(2, 6, choice);

choice;

string ReceiveHashInput() {
string hash;

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

cout << << endl <<
cin >> hash;
cout << endl;

hash;

string ReceiveFilename() {
string filename;
cout <<
endl << ¢
cin >> filename;
cout << endl;
filename;

ReceiveThreads() {
threadNumber;
choice;

cout << << endl <<
<< endl <<

cin >> choice;

cout << endl;

validatelnt(1, 2, choice);

(choice == 1) {
cout <<

end| <<
cin >> threadNumber;
cout << endl;

validatelnt(1, 10, threadNumber);

threadNumber += 2;

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

threadNumber = thread::hardware_concurrency();

threadNumber;

receiveDisplayChoice() {
choice;
cout << << endl <<
<< endl << g
cin >> choice;
cout << endl;
choice = validatelnt(0, 1, choice);

choice;

ReceiveMethodChoice() {

choice;
cout << << endl << << endl <<
<< endl <<
cin >> choice;
cout << endl;
choice = validatelnt(1, 2, choice);

choice;

numberCounter() {
('done)

unique_lock<mutex> mylock(counter_mutex);
('done && counter_bool ==) {
counter_cv.wait(mylock);

}

(done)

counter +=1;
counter_bool =

hashFunction() {

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

hashChoice;
string stringToHash;
string hash;

cout << << endl << << endl <<
endl << << endl << << endl << << endl <<

cin >> hashChoice;

cout << endl;

hashChoice = validatelnt(1, 5, hashChoice);

cout << << endl <<

cin >> stringToHash;

cout << endl;

(hashChoice)

: hash = md5(stringToHash);

: hash = sha224(stringToHash);
: hash = sha256(stringToHash);
: hash = sha384(stringToHash);
: hash = sha512(stringToHash);

’

cout << << stringToHash << endl << << hash << endl;

’

string filename;

hashChoice = 0;

string inputHash ="";

attempts;

stringlength = 1;

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

threadNumber;

display;

methodChoice;

methodChoice = ReceiveMethodChoice();

(methodChoice == 1) {
hashFunction();

hashChoice = ReceiveChoicelnput();

inputHash = ReceiveHashlnput();

filename = ReceiveFilename();

display = receiveDisplayChoice();

threadNumber = ReceiveThreads();

cout <<

the_clock::time_point start = the_clock::now();

vector<thread> tvector = {};

tvector.push_back(thread(numberCounter));

(stringlength < (threadNumber - 1)) {
tvector.push_back(thread(BruteForce, stringlength, "", inputHash,
hashChoice, display));

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

stringlength++;

tvector.push_back(thread(DictionaryAttack, filename, inputHash, hashChoice,

(inti=1; i< threadNumber; i++) {
tvector[i].join();

(done) {
cout << << FoundPassword << endl;
cout << << counter << endl;

cout << << endl;

}

the_clock::time_point end = the_clock::now();

time_taken = duration_cast<milliseconds>(end - start).count();
cout << << time_taken << <<
<< hashMethod << << method <<

counter_cv.notify_one();
(tvector.front()).join();

system(

’

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

size_type;

MD5();
MD5(std::string& text);
update(*buf, size_type length);
update(*buf, size_type length);
MD5& finalize();
std::string hexdigest()
std::ostream& <<(std::ostream&, MD5 md5);

init();
uintl;
uint4;
{ blocksize = 64 };

transform(uintl block[blocksize]);
decode(uint4 output[], uintl input[], size_type len);
encode(uintl output(], uint4 input[], size_type len);

finalized;
uintl buffer[blocksize];
uint4 count([2];
uint4 state[4];
uintl digest[16];

uint4 F(uint4 x, uint4 vy, uint4 z);

uint4 G(uint4 x, uint4 y, uint4 z);

uint4 H(uint4 x, uint4 y, uint4 z);

uint4 I(uint4 x, uint4 y, uint4 z);

uint4 rotate_left(uint4 x, n);
FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
[l(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);

|3

std::string md5(std::string str);

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Sha224.h

SHA224

uint8;
uint32;
uint64;

uint32 sha256_Kk[];
SHA224 256 BLOCK_SIZE = (/ 8);

*message,
*digest);
DIGEST_SIZE = (224 / 8);

transform(*message,
m_tot_len;
m_len;
m_block[2 * SHA224 256 BLOCK_SIZE];
uint32 m_h[8];

|7

std::string sha224(std::string input);

66 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Sha256.h

SHA256

uint8;
uint32;
uint64;

uint32 sha256_Kk[];
SHA224 256 BLOCK_SIZE = (/ 8);

init();

update(*message,

final(*digest);
DIGEST_SIZE = (256 / 8);

transform(*message, block_nb);
m_tot_len;

67 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

m_len;
m_block[2 * SHA224 256 BLOCK_SIZE];
uint32 m_h[8];

|7

std::string sha256(std::string input);

Sha384.h

SHA384

uint8;
uint32;

68 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

uint64;

uint64 sha512_ Kk[];
SHA384_512_BLOCK_SIZE = (/8);

init();

update(*message,

final(*digest);
DIGEST_SIZE = (384 / 8);

transform(*message,
m_tot_len;
m_len;
m_block[2 * SHA384 512 BLOCK_SIZE];
uint64 m_h[8];

std::string sha384(std::string input);

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Sha512.h

SHA512

uint8;
uint32;
uint64;

uint64 sha512 k[];
SHA384 512 BLOCK_SIZE = (/ 8);

init();
update(*message,
final(*digest);

DIGEST _SIZE = (512 / 8);

transform(*message, block_nb);
m_tot_len;

70 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

m_len;
m_block[2 * SHA384 512 BLOCK_SIZE];
uint64 m_h[8];

std::string sha512(std::string input);

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Md5.cpp

72 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

::uint4 MD5::F(uint4 x, uint4 y, uint4 z) {
X&Y | “x&z;

::uint4 MD5::G(uint4 x, uint4 y, uint4 z) {
Xx&z|y&~z

::uint4 MD5::H(uint4 x, uint4 y, uint4 z) {
X N yAz;

::uint4 MD5::l(uint4 x, uint4 y, uint4 z) {
y A (x| ~2);

::uint4 MD5::rotate_left(uint4 x, int n) {
(x <<n) | (x>>(32-n));

MD5::FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
a = rotate_left(a + F(b, c, d) + x + ac, s) + b;

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

MD5::GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
a = rotate_left(a + G(b, c, d) + x + ac, s) + b;

MD5::HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
a = rotate_left(a + H(b, ¢, d) + x + ac, s) + b;

MD5::ll(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
a = rotate_left(a +I(b, c,d) + x+ ac, s) + b;

MDS5::MD5()
{

init();
}

MD5::MD5(std::string &text)

{
init();
update(text.c_str(), text.length());
finalize();

MD5::init()

finalized =

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

MD5::decode(uint4 output(], uintl input[], size_type len)

(i=0,j=0;j<len;i++ j+=4)
output[i] = ((uintd)input[j]) | (((uint4)input[j + 1]) << 8) |
(((uint4)input[j + 2]) << 16) | (((uint4)input[j + 3]) << 24);

MD5::encode(uintl output[], uint4 input([], size_type len)

(size_typei=0,j=0;j<len;i++ j+=4){
output[j] = input[i] & ;
output[j + 1] = (input[i] >> 8) &
output[j + 2] = (input[i] >> 16) &
output[j + 3] = (input[i] >> 24) &

MD5::transform(uintl block[blocksize])

uint4 a = state[0], b = state[1], ¢ = state[2], d = state[3], X[
decode(x, block, blocksize);

-
-
&
&
x
=
P

<~

-
n
nuum umvmumumvmumvm unmoumumoumom
[EEN
=

P_
x
=

<

Q T

~

-
-n
Q
x
[N
w

-n
-n
o
x

[N
‘.b

<

x

o Qo

N

T‘
i)
&

-n
-
P_
x

=
N

<

L T
0L QT 0 Q0T 0 QT 0o
x

x

-
-n
[N

w

<

-n
-n
o
x

[N
‘.b

<

x
=
P

o Qo

N

T‘
i)
&

<~

-n
n
o Q)

O 0 Q0 T Q0 TOo Qo0 T
x

Q T

~

_n
)

Q
<

~

-
-

o
x

x

o Qo

N

M
M
e i e e e e e e e e e e e e

e e e e e B B B Con) fe Do D e

-
-

<
o

<

75 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

FF(c, d, a, b, x[14], S13,

1, S33,
1, S34,

76 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

state[0] += a;
state[1] += b;
state[2] +=c;
state[3] +=d;

memset(x, O, X);

MD5::update(input(], size_type length)

size_type index = count[0] / 8 % blocksize;

((count[0] += (length << 3)) < (length << 3))
count[1]++;
count[1] += (length >> 29);
size_type firstpart = 64 - index;
size_type i;

(length >= firstpart)
{

memcpy(&buffer[index], input, firstpart);
transform(buffer);

(i = firstpart; i + blocksize <= length; i += blocksize)

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

transform(&inputli]);

index = 0;

memcpy(&buffer[index], &input[i], length - i);

MD5::update(input[], size_type length)

update((*)input, length);

MD5& MD5::finalize()

('finalized) {

bits[8];
encode(bits, count, 8);

size_type index = count[0] / 8 % 64;
size_type padLen = (index < 56) ? (56 - index) : (- index);
update(padding, padLen);

update(bits, 8);

encode(digest, state, 16);

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

memset(buffer, O, buffer);
memset(count, 0, count);

finalized =

std::string MD5::hexdigest()
{

(!finalized)

buf[33];
(inti=0;i<16;i++)
sprintf(buf +i * 2, , digest[i]);
buf[32] = 0;

std::string(buf);

std::ostream& <<(std::ostream& out, MD5 md5)

{
out << md5.hexdigest();

}

std::string md5(std::string str)
{

MD5 md5 = MD5(str);

md5.hexdigest();

Sha224.cpp

79 | Page

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

SHA224::sha256 k|

m_tot_len =0;

SHA224::update(*message,

block_nb;
new_len, rem_len, tmp_len;
*shifted_message;
tmp_len = SHA224 256 _BLOCK_SIZE - m_len;
rem_len =len <tmp_len ? len : tmp_len;
memcpy(&m_block[m_len], message, rem_len);
(m_len + len < SHA224 256 BLOCK_SIZE) {

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

m_len += len;
}
new_len =len - rem_len;
block_nb = new_len / SHA224_256_BLOCK_SIZE;
shifted_message = message + rem_len;
transform(m_block, 1);
transform(shifted_message, block_nb);
rem_len = new_len % SHA224 256 BLOCK_SIZE;
memcpy(m_block, &shifted _message[block _nb << 6], rem_len);
m_len = rem_len;
m_tot_len += (block_nb + 1) << 6;

SHA224::final(*digest)

block_nb;
pm_len;
len_b;
;
block_nb = (1 + ((SHA224_256_BLOCK_SIZE - 9)
< (m_len % SHA224_256_BLOCK_SIZE)));
len_b = (m_tot_len+ m_len) << 3;
pm_len = block_nb << 6;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = £
SHA2_UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);
(i=0;i<7;i++){
SHA2_UNPACK32(m_hl[i], &digest[i << 2]);

SHA224::transform(*message, block_nb)

uint32 w(64];
uint32 wv[8];
uint32 tl, t2;
*sub_block;
I;
I
(i=0;i<(int)block_nb; i++) {
sub_block = message + (i << 6);
(1=0;j<16; j++) {
SHA2_PACK32(&sub_block([j << 2], &w([j]);

;1< 64; j++){

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

w([j] = SHA256_F4(wlj - 2]) + w[j - 7] + SHA256_F3(w[j - 15]) + w][j -

;1< 8) |
wv[j] = m_hj];

;i< 64; j++) {

tl = wv[7] + SHA256_F2(wv[4]) + SHA2 CH(wv[4], wv[5], wv[6])
+sha256_kl[j] + w[j];

t2 = SHA256_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);

wv[7] = wv[6];

m_h[j] += wv[j];

}

std::string sha224(std::string input)

{
digest[SHA224::DIGEST_SIZE];

memset(digest, 0, SHA224::DIGEST_SIZE);
SHA224 ctx = SHA224();

ctx.init();
ctx.update((*)input.c_str(), input.length());

ctx.final(digest);

buf[2 * SHA224::DIGEST_SIZE + 1];
buf[2 * SHA224::DIGEST_SIZE] = 0;
(inti=0;i<SHA224::DIGEST_SIZE; i++)
sprintf(buf +i * 2, , digest[i]);
std::string(buf);

Sha256.cpp

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

SHA256::5sha256_k|

SHA256::transform(*message, block_nb)

uint32 w(64];
uint32 wv[8];
uint32 tl, t2;
*sub_block;
i;
i
(i=0; i< (int)block_nb; i++) {
sub_block = message + (i << 6);
(1=0;j<16; j++){
SHA2_PACK32(&sub_block[j << 2], &wl[j]);

(j=16; j< 64; j++) {
wl[j] = SHA256_F4(w][j - 2]) + wj - 7] + SHA256_F3(w][j - 15]) + w]j -
;1<8; j++) {
wv[jl = m_h[j];

;i< 64; j++) {
tl = wv[7] + SHA256_F2(wv[4]) + SHA2_ CH(wv[4], wv[5], wv[6])

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

+sha256_kl[j] + w[j];
t2 = SHA256_F1(wv[0]) + SHA2_MAJ(wv[0], wv[1], wv[2]);
wv([7] = wv[6];

m_h[j] += wv[j];

SHA256::update(*message,

block_nb;
new_len, rem_len, tmp_len;
*shifted_message;
tmp_len = SHA224 256_BLOCK_SIZE - m_len;
rem_len =len <tmp_len ? len: tmp_len;
memcpy(&m_block[m_len], message, rem_len);
(m_len + len < SHA224_256_BLOCK_SIZE) {
m_len += len;
}
new_len =len - rem_len;
block_nb =new_len / SHA224 256 BLOCK_SIZE;
shifted_message = message + rem_len;
transform(m_block, 1);

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

transform(shifted_message, block_nb);

rem_len = new_len % SHA224 256 BLOCK_SIZE;
memcpy(m_block, &shifted _message[block nb << 6], rem_len);
m_len =rem_len;

m_tot_len += (block_nb + 1) << 6;

SHA256::final(*digest)

block_nb;
pm_len;
len_b;
l;
block_nb = (1 + ((SHA224_256_BLOCK_SIZE - 9)
< (m_len % SHA224_256_BLOCK_SIZE)));
len_b =(m_tot_len + m_len) << 3;
pm_len = block_nb << 6;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = g
SHA2 UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);
(i=0;i<8;i++){
SHA2 UNPACK32(m_hl[i], &digest[i << 2]);

}

std::string sha256(std::string input)
{
digest[SHA256::DIGEST_SIZE];
memset(digest, 0, SHA256::DIGEST_SIZE);

SHA256 ctx = SHA256();

ctx.init();

ctx.update((*)input.c_str(), input.length());
ctx.final(digest);

buf[2 * SHA256::DIGEST_SIZE + 1];
buf[2 * SHA256::DIGEST_SIZE] = 0;
(inti=0; i < SHA256::DIGEST_SIZE; i++)
sprintf(buf +i * 2, , digest[i]);
std::string(buf);

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

Sha384.cpp

SHA384::sha512_k[80] =
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

SHA384::init()

m_tot_len =0;

SHA384::update(*message,

block_nb;
new_len, rem_len, tmp_len;
*shifted_message;
tmp_len = SHA384 512 BLOCK_SIZE - m_len;
rem_len =len <tmp_len ? len : tmp_len;

memcpy(&m_block[m_len], message, rem_len);
(m_len + len < SHA384 512 BLOCK_SIZE) {
m_len += len;

}

new_len =len - rem_len;

block_nb =new_len / SHA384 512 BLOCK_SIZE;
shifted_message = message + rem_len;

transform(m_block, 1);

transform(shifted_message, block nb);

rem_len = new_len % SHA384 512 BLOCK_SIZE;
memcpy(m_block, &shifted _message[block nb << 7], rem_len);
m_len =rem_len;

m_tot_len += (block_nb + 1) << 7;

SHA384::final(*digest)

block_nb;
pm_len;
len_b;

i;

block_nb = (1 + ((SHA384_512_ BLOCK_SIZE - 17)

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

< (m_len % SHA384 512 _BLOCK_SIZE)));
len_b =(m_tot_len+m_len) << 3;
pm_len = block_nb << 7;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = :
SHA2 UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);

(i=0;i<6;i++){

SHA2_UNPACK64(m_hi], &digest[i << 3]);

SHA384::transform(*message,

uint64 w([80];
uint64 wv(8];
uint64 t1, t2;
*sub_block;
i, J;
(i=0;i<(int)block_nb; i++) {
sub_block = message + (i << 7);
(1=0;j<16; j++) {
SHA2_PACK64(&sub_block[j << 3], &wl[jl);

(j=16; j<80; j++) {
wl[j] = SHA512_F4(w[j - 2]) + w[j - 7] + SHA512_F3(w]j - 15]) + w(j -

;<8)
wv[j] = m_h(j];

;1< 80; j++) {

t1 =wv[7] + SHA512_F2(wv[4]) + SHA2_CH(wv[4], wv[5], wv[6])
+sha512_k[j] + wij];

t2 = SHA512 F1(wv[0]) + SHA2_ _MAJ(wv[0], wv[1], wv[2]);

wv[7] = wv[6];

wv[6] = wv[5];

wv[5] = wv[4];

wv[4] = wv[3] + t1;

wv[3] = wv[2];

wv[2] = wv[1];

wv[1] = wv[0];

wv[0] = t1 + t2;

;<8)
m_h[j] += wv[j];

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

}

std::string sha384(std::string input)

{
digest[SHA384::DIGEST_SIZE];

memset(digest, 0, SHA384::DIGEST_SIZE);

SHA384 ctx = SHA384();

ctx.init();

ctx.update((*)input.c_str(), input.length());

ctx.final(digest);

buf[2 * SHA384::DIGEST_SIZE + 1];
buf[2 * SHA384::DIGEST_SIZE] = 0;
(inti=0; i< SHA384::DIGEST_SIZE; i++)
sprintf(buf +i * 2, , digest[i]);
std::string(buf);

Sha512.cpp

SHA512::sha512_ k|
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,
ULL,

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL,
ULL, ULL };

SHA512::transform(*message, block_nb)

uint64 w[80];
uint64 wv([8];
uint64 tl, t2;
*sub_block;
i, J;
(i=0; i< (int)block_nb; i++) {
sub_block = message + (i << 7);
(1=0;j<16; j++){
SHA2_PACK64(&sub_block[j << 3], &wl[j]);

(j=16; j< 80; j++) {
wl[j] = SHA512_F4(wlj - 2]) + w[j - 7] + SHA512_F3(w]j - 15]) + w]j -
;1<8; j++) {
wv[jl = m_h[j];

;< 80; j++) {
tl = wv[7] + SHA512 F2(wv[4]) + SHA2_ CH(wv[4], wv[5], wv[6])

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

+sha512_ k[j] + wij];
t2 = SHA512 F1(wv[0]) + SHA2_ _MAJ(wv[0], wv[1], wv[2]);
wv([7] = wv[6];

m_h[j] += wv[j];

m_tot_len =0;

SHA512::update(*message,

block_nb;
new_len, rem_len, tmp_len;
*shifted_message;
tmp_len = SHA384_ 512 BLOCK_SIZE - m_len;
rem_len =len <tmp_len ? len : tmp_len;
memcpy(&m_block[m_len], message, rem_len);
(m_len + len < SHA384_ 512 BLOCK_SIZE) {
m_len += len;
}
new_len =len - rem_len;
block_nb =new_len / SHA384 512 BLOCK_SIZE;
shifted_message = message + rem_len;

Transmitting and Storing Data Securely in 2020 — Jonah McElfatrick

transform(m_block, 1);

transform(shifted_message, block nb);

rem_len = new_len % SHA384 512 BLOCK_SIZE;
memcpy(m_block, &shifted _message[block nb << 7], rem_len);
m_len =rem_len;

m_tot_len += (block_nb + 1) << 7;

SHA512::final(*digest)

block_nb;
pm_len;
len_b;
i;
block_ nb =1 + ((SHA384 512 BLOCK_SIZE - 17)
< (m_len % SHA384 512 BLOCK_SIZE));
len_b =(m_tot_len + m_len) << 3;
pm_len = block_nb << 7;
memset(m_block + m_len, 0, pm_len - m_len);
m_block[m_len] = ;
SHA2 UNPACK32(len_b, m_block + pm_len - 4);
transform(m_block, block_nb);
(i=0;i<8;i++){
SHA2_UNPACK64(m_h[i], &digest[i << 3]);

}

std::string sha512(std::string input)
{
digest[SHA512::DIGEST_SIZE];
memset(digest, 0, SHA512::DIGEST_SIZE);
SHA512 ctx = SHA512();
ctx.init();
ctx.update((*)input.c_str(), input.length());
ctx.final(digest);

buf[2 * SHA512::DIGEST_SIZE + 1];
buf[2 * SHA512::DIGEST_SIZE] = 0;
(inti=0; i < SHA512::DIGEST_SIZE; i++)
sprintf(buf +i * 2, , digest[i]);
std::string(buf);

